
Graph-based Indices for ANNS
Harsha Simhadri (Microsoft)

Why Graph Indices?
Pros:

• Query efficiency

• Versatile

Cons:

• Slow index construction

• Little theoretical understanding

• Harder to integrate into databases

Outline

• Part 1 [Efficiency]
● Graph indices: search, construction and empirical analysis

● (H)NSW,
● NSG, Vamana/DiskANN
● HCNNG

● (Limited) analysis of convergence properties

• Part 2 [Versatility]
●Disk-based indices
●Streaming indices
●Filtered search
●Out of Distribution queries

11
/1

6/
20

23

3

Locality Sensitive Hashing (LSH)

• Hash space into buckets using
many random hyperplanes
●When query arrives, fetch points

from nearby buckets (all orange
points) and return top K vectors

• First and only theoretically sound
algorithm for ANNS
● O(n1+1/c)-space and O(d n1/c)-query time

for c-approximate NNS

11
/1

6/
20

23

4

Clustering based algorithms [Matthijs’ talk]
Popularized by Facebook AI Similarity Search [FAISS IVF]

• Index build: Cluster points into k=n1/2 clusters
● (k=32000 for n=1B)

• Query time
● Find w closest clusters to query
● Retrieve all points from these w clusters
● Output top-k based on approximate distances using

compressed vectors

• Compress each vector into 32 bytes so billion points fit
into 32 GB RAM using product quantization

High density of points/machine

Low recalls

Main drawback: compressed vector distances are
lossy and susceptible to noise

11
/1

6/
20

23

5

LSH, Clustering, Graph at 100 million scale

Cross-polytope LSH from FALCONN library [Razenshteyn’16]
number of tables = {10 15}, probe width = {25 50 100 200}, dimension of
last polytope = {4 8 16 32}, cross polytope number = 4, number of rotations
= 3

11
/1

6/
20

23

6

Graph-based ANN indices: Data Structure

Index Data Structure:
• One vertex per vector/embedding.
• Directed edges between vertices

• Typically O(log n) degree.
• Store out-neighbors

• A designated starting point, s
• Size: n*(vector_size + 4Bytes x degree)

 Example in two dimensions with
randomly distributed data.

s

11
/1

6/
20

23

7

Graph-based ANN indices: Query Path (simplified)

Greedy search (simplified) for query q:
Start at designated start s, and iterate:

1. compute dist. from q to neighbors
2. hop to node closest to q,
as long as distance improves

Pitfalls: Local minima. No backtracking.

Let us add backtracking

s

q

11
/1

6/
20

23

8

Graph-based ANN indices: Beam Search with Priority
Queue

See Black Board

s

q

11
/1

6/
20

23

9

High recall and low latency

Data and graph in memory

Only ~100M points/machine

Graph Construction

How to build sparse graphs where the greedy search algorithm

●A) converges to good nearest neighbor candidates

●B) In as few “hops” as possible

11
/1

6/
20

23

10

Examples in 1 dimension

One-dimensional dataset: points on a line

Bad Graph: Not even navigable

s p1 p2 p3 p4
p5 p6 p7 p8

p9 p10 p11
q

11
/1

6/
20

23

11

Navigable Graph, but needs many hops to convergence

s p1 p2 p3 p4
p5 p6 p7 p8

p9 p10 p11
q

11
/1

6/
20

23

12

Examples in 1 dimension

One-dimensional dataset: points on a line

Navigable Graph with few hops

s p1 p2 p3 p4
p5 p6 p7 p8

p9 p10 p11
q

Main Algorithmic Challenge:

Sparse + Navigable + Low-diameter
Graphs for High-Dimensional Vectors

11
/1

6/
20

23

13

Examples in 1 dimension

One-dimensional dataset: points on a line

Navigable Small World (NSW) graphs
[Malkov, Ponomarenko, Logvinov, Krylov, Information systems, vol 45(61-68)]
G.insert(p) {

N(p) G. search(p)
Connect p with N(p)

}

• Randomize order of insertion

• Start search anywhere

• No prune of insertions

• Empirical claims:
● Degree ~ max (dimension, log n) is sufficient
● #hops to convergence proportional to log n (with some function of d as a constant multiplicative

factor)

Navigable Small World (NSW) graphs
[Malkov, Ponomarenko, Logvinov, Krylov, Information systems, vol 45(61-68)]

Navigable Small World (NSW) graphs
[Malkov, Ponomarenko, Logvinov, Krylov, Information systems, vol 45(61-68)]

Hierarchnical NSW [Malkov, Yashunin, T.PAMI’18]

HNSW: Construction and Search
Comparison with NSW

• No shuffle: Randomization via sampling

• Designated start point

• Prune candidates for selecting neighbors

• Degree bound

HNSW: Impact of construction parameters

HNSW: Comparison with NSW

HNSW: Comparison with other algorithms

Is a hierarchical graph necessary?

●NSG: Fast Approximate Nearest Neighbor Search With The Navigating
Spreading-out Graph [Fu, Xiang, Wang, Cai, Proc. VLDB vol. 12]

●DiskANN: Fast Accurate Billion-point Nearest Neighbor Search on a Single
Node [Subramanya, Kadekodi, Devvrit, Krishnaswamy, Simhadri, NeurIPS’19]

Index build, point by point
G.insert(p, R, α) // R is degree bound, α>=1 constant
❑ V vertices visited by G.search(p) // |V|~5-10K
❑ V’ Prune(p, V, R, α)
❑ For all v ∈ V’

• add edges (p,v) and (v,p) to G

• if |Nout(v)| > R
 Nout(v) Prune(v, Nout(v), R, α)

11
/1

6/
20

23

23

s

p

G

G.insert(p, R, α) // R is degree bound, α>=1 constant
❑ V vertices visited by G.search(p) // |V|~5-10K
❑ V’ Prune(p, V, R, α)
❑ For all v ∈ V’

• add edges (p,v) and (v,p) to G

• if |Nout(v)| > R
 Nout(v) Prune(v, Nout(v), R, α)

11
/1

6/
20

23

24

Prune(p, V, R, α) returns V’ // |V’|<R is degree, α typically 1.2

❑ Sort V in increasing order of distance from p

❑ V’ {v1}

❑ for i ∈ {2, …, |V|} while |V’| < R
❑ if for any v ∈ V’, d(v,vi) < d(p,vi)/α, skip i &

continue
❑ else, add vi to V’

pv1

v5

v3 v4

v6

v7

v2

s

p

GIndex build: prune candidates to size

Index properties: dependence on alpha
α=1 α=1.2

11
/1

6/
20

23

25

DiskANN BFS Animation [credit: Weaviate]

HCNNG [Muñoz, Gonçalves, Dias, Torres, Pattern Recognition vol. 96]

• Repeat d~50 times (for a average d-degree graph)
● Pick random points p1 and p2
● Divide the space into two with the perpendicular bisector of p1 --- p2
● Recursively divide both half-spaces similarly to create a space-partitioning tree
● Leaf node: stop when fewer than (say) 1000 points in the partition.
● In each leaf, consider the complete graph between points weighted by their distance.
● Compute Minimum Spanning Tree with max-degree 3 (using distance as weights).

• Final Edge set Union of MSTs in all leaves in all iterations!

, , ,

Parlay ANN library [Dobson, Shen, Blelloch, Dhulipala, Gu, Simhadri, Sun,
PPoPP’24]

• High quality parallel implementations that scale to 100+ threads on up to 1B sized
dataset

• Link: ParlayANN/algorithms at main · cmuparlay/ParlayANN (github.com)

• Various optimizations
● Incremental batch construction (doubling range at the beginning)
● Memory optimizations

Build time and QPS comparison

Scaling properties

Analysis [Xu, Indyk, NeurIPS’23]

• Convergence analysis of (simplified) DiskANN in terms of doubling dimension and
Diameter of dataset

Outline

• Part 1 [Efficiency]
● Graph indices: Search, Construction and empirical analysis

● (H)NSW,
● NSG, Vamana/DiskANN
● HCNNG

● (Limited) analysis of convergence properties

• Part 2 [Versatility]
●Disk-based indices
●Streaming indices
●Filtered search
●Out of Distribution queries

11
/1

6/
20

23

32

ANNS at scale: Size, Speed and Freshness 11
/1

6/
20

23

33

Web Search & Reco Email Search Enterprise search

Index Size ~1 trillion pages 100s of trillions of
sentences

Trillions of paragraphs
across documents

Update Rate
(latency <1s)

~10K/sec Ingest new email, Purge
deletes

~1% change/day

Search
latency/QPS

<10ms
10-100K+ Queries/sec

100s of ms 10-100ms

Problem 1: Existing algorithms use in-memory
indices for <10ms latency and high throughput

Problem 2: High-quality indices are graph-based, and
hard to update. Rebuilt from scratch periodically.

DiskANN [NeurIPS’19]: Index 5-10x more points/machine using
inexpensive SSDs; serve with <10ms latency and 10000+ QPS.

Fresh-DiskANN [arXiv:2105.09613]:
DiskANN + Real-time freshness + 1000s of updates/sec

10,000s of machines (100GB
DRAM) to serve a trillion-point
index for web search

10,000s of machines to
periodically rebuild indices
every 6/12/24 hours

ANNS Challenges: Not all queries are simple 11
/1

6/
20

23

34

Problem 3: “Predicated” or “filtered” queries, e.g.,
• Best URLs/doc/Ads for query that match user’s

region/language/site
• Image matching query with license X
Filtered DiskANN [WWW’23]: Order of magnitude higher QPS
and lower query latency; high recall even for rare predicates

Low recall for most predicates,
especially infrequent ones

Problem 4: Out-of-distribution queries, e.g.,
• Image index, text queries
• Long text index, short queries

OOD-DiskANN [arXiv:2211.12850] Indices that can adapt to
query distribution

Low recall as algorithms
overfit to index data
distribution

DiskANN [NeurIPS’19]: High recall, low latency via hybrid DRAM+SSD
index

11
/1

6/
20

23

35

GreedySearch(q)
• Let p := s (start node)
• Fetch neighbors of p from SSD
• Use compressed representation of points to

find neighbor p closest to q

SSD

1B Vectors (100-1000d) +
Graph(~100 degree) ~ 500GB-1TB

Low Diameter (<10 hops)

Compressed vectors (~32B)

DRAM

s

q

Index properties: BFS and graph diameter
(α=1.2)

BFS level (from
designated
start point)

points at BFS level i
(1billion point MS
SPACEV dataset)

1 100

2 9946

3 891273

4 52050789

5 682738849

6 252099714

7 11835439

8 190225

9 104202

10 47656

11 11095

12 1536

13 212

14 24

15 1

98% of points
<= 6 hops from
start

BFS level (from
designated
start point)

points at BFS level i
(1billion point MS
BIGANN dataset)

1 73

2 3868

3 213058

4 10864635

5 226069439

6 673168120

7 88167475

8 1487493

9 6645

10 798

11 131

12 16

13 1

90% of points
<= 6 hops from
start

11
/1

6/
20

23

36

Round-trips to SSD: Comparison with other
graph algorithms

Search Parameters
PQ size 32, Ls=30
Beam-width, W = 4

DiskANN DiskANN

11
/1

6/
20

23

37

Sharded construction for datasets larger than memory

Divide & Conquer:
• Cluster data into

partitions/clusters that fit into
memory (1B points + 100GB RAM
limit -> 10 to 20 shards)

• send each point to be indexed to 2
nearest clusters

• Build graph on each shard
• Final graph is the edge union of

smaller graphs
• Cleanly avoids “boundary effects”

which arise due to k-means
partitioning

11
/1

6/
20

23

38

Recall, latency, QPS and IO/s for 100-degree graph

11
/1

6/
20

23

39

BIGANN dataset: 1Billion points in 128 dimensions

Memory footprint = 32GB + 250K adjacency lists cached in memory ~ 33GB

In comparison, in-memory graph indices (e.g., HNSW) would need 500GB+ DRAM

Can use as in-memory index, better than existing algorithms

DiskANN++ [Ni, Xu, Wang, Li, Yao, Xiao, Zhang, [2310.00402]]

Improved query performance with

• Better Start points

• Reordered disk layout with more IO locality

https://ann-benchmarks.com

11
/1

6/
20

23

41

SIFT Image descriptors
1M points,

 128 dimensions,
 L2 distance

Classified as Microsoft Confidential

Harsha Simhadri* (Organizer for Track
T1/T2),
George Williams§ (Organizer for Track T3),
Martin Aumüller¤, Matthijs Douze†,
Ravishankar Krishnaswamy *+, Artem
Babenko‡, Dmitry Baranchuk‡, Qi Chen*,
Lucas Hosseini†, Gopal Srinivasa*, Suhas
Jayaram Subramanya#, Jingdong Wang^

*Microsoft Research, §GSI Technology, ¤IT University of Copenhagen,
†Facebook AI Research, ‡Yandex Labs, #Carnegie Mellon University, +IIT
Madras, ^Baidu

https://big-ann-benchmarks.com/neurips21.html

NeurIPS’21:
Billion-Scale
Approximate Nearest
Neighbor Search
Challenge

[Thanks to Microsoft for generous support including Azure credits for participants and organizers]

Track 1:
Standard Azure hardware,
limited DRAM (64GB)
Baseline: FAISS IVF + PQ

Track 2:
Standard Azure hardware,
Limited DRAM(64GB) + 2TB SSD
Baseline: DiskANN

Track 3:
Any hardware,
Cost- and Watt-normalized query
throughput
Winner: Intel’s adaption of DiskANN to
Optane pmem

Six Billion-scale Datasets from INRIA/IRISA, Facebook (now Meta), Microsoft,
Yandex

Dataset Source Size Encoder/Task Other notes
BIGANN-1B CNRS/IRISA

http://corpus-texmex.irisa.fr/
128 dims uint8
L2

SIFT descriptors for image
similarity

SSNPP-1B* Facebook 256 dims uint8
L2

SimSearchNet++ image
encoder

Range search

SpaceV-1B* Microsoft
https://github.com/microsoft/SPTAG/tr
ee/master/datasets/SPACEV1B

100 dims int8
L2

Docs and queries encoded
by Microsoft SpaceV Superior model
to capture generic intent
representation.

Turing-ANNS-1B* Microsoft Turing 100 dims float
L2

Bing queries encoded by
Turing AGI v5 encoder.

Text2Image-1B* Yandex
https://research.yandex.com/d
atasets/biganns

200 dims float
Inner-product

Images encoded by
Se-ResNext-101 model, queries are
text encoded by a variant of DSSM

Cross-modal; Query
distribution different
from index set

DEEP-1B Yandex
https://www.cv-foundation.org/openacces
s/content_cvpr_2016/app/S09-38.pdf

96 dims float
L2

GoogLeNet pretrained for
Imagenet classification task +
PCA + l2 normalized

[* new datasets released for the competition]

11
/1

6/
20

23

43

Track 3 [any hardware]
Capex + Opex improvement over baseline for 100,000 QPS

Rank Submission Team Hardware Status Score Deep1B BigANN MSTuring MSSpace Text2Image FBSSNet

1 optanne_graphann Intel Intel Optane final $-3,978,198.83 $16,086.82 $15,439.92 $16,347.45 $16,382.81 $103,599.49 -

2 cuanns_ivfpq NVidia NVidia GPU final $-2,314,829.98** $303,929.39 $304,166.48 $153,151.00 $153,155.12 $916,823.34 -

3 cuanns_multigpu NVidia NVidia GPU final $-2,268,943.17** $151,009.85 $150,824.13 $151,726.30 $150,816.00 - -

4 gemini GSI Technology(org) LedaE APU final $-907,570.13 $569,058.09 $569,210.35 $286,911.87 $398,163.18 $1,213,773.56 $629,442.91

5 faiss_t3 Facebook
Research(org) NVidia GPU final baseline $545,633.16 $737,886.17 $853,857.46 $735,942.66 $1,272,735.86 $428,074.79

6 - - - - - - - - - - -

Deletes: Are they easy? 11
/1

6/
20

23

45

Policy A (drop): drop graph vertices corresponding to
deleted points.

Policy B (shortcut): To delete vertex p, for any pair of
directed edges (pin p) and (p pout) in the graph, add
the edge (pin pout) in the updated graph.

FreshDiskANN: DiskANN + concurrent updates

• First graph index that supports inserts/deletes with recall stability (empirically).
● No theoretical guarantees or adversarial bounds, yet.

• A streaming system that supports concurrent updates and search
● User facing latency: ~10ms search, ~1ms insert. Real time freshness.
● 1000s of inserts, deletes and queries/sec/node
● Primarily backed by SSD, Low memory footprint (128GB for ~1B points in 100

dimensions)

11
/1

6/
20

23

46

Search Params/Complexity

Re
ca

ll

100%

Index over D~D

Search Params/Complexity

Re
ca

ll

100%

Index over D U X \ YInsert X~D
Delete Y~D

Recall Stability:
Same search params

 Same recall

Delete (v)
For all u, that are in-neighbors of v,

N(u) N(u) U N(v)

If |N(u)| exceeds budget

prune N(u) with α>1

11
/1

6/
20

23

47

u

v

u

u

Eager execution requires in-graph, which doubles memory footprint
In practice, do lazily, to avoid in-graph and amortize cost better

Lazy Deletion via periodic consolidations
• Eager deletion requires in-neighbors

● Double the memory
● Much more complicated locking

• Lazy approach..
● Maintain a deleted_set which keeps a record of points marked deleted.
● Exclude from search results
● Cleanup periodically

• For each vertex v in V
● If v is deleted

● Remove Nout(v) from G

● Else
● For each w in Nout(v) that is deleted

● Nout(V) Nout(v) U Nout(w) \ w //exclude deleted nodes from N out(w)
● If |Nout(V)| > max-degree

● Nout(V) prune (Nout(V), v)

Recall stability 11
/1

6/
20

23

49

Evolution of search recall of DiskANN (α=1.2) over
50 cycles of deletion (right) and reinsertion (left) of

50% of data for 3 datasets with varying search
parameter.

Same experiment with α=1
Recall degrades over iterations

HNSW and DiskANN prune
“final_runbook” on Big-ANN-Benchmarks from
NeurIPS’23
 [credit: Erkang Zhu]

HNSW delete policy HNSW
+
DiskANN edge repair
Applied lazily (consolidate_delete)

HNSW
+
DiskANN eager edge repair

Inspect candidates by decreasing
distance, select a candidate as
neighbor only when the distance
between the source point and the
candidate is greater than the distance
between the candidate and all of
existing selected neighbors.

Fresh-DiskANN System 11
/1

6/
20

23

51

SSD

Memory
RW-Short-Term Index

RO-Short-Term Index

RO-Short-Term Index

Delete (v)Delete List
appen
d

Insert (v)
Insert

Search (v)

Snapshot

RW-Short-Term Index

Merge

Long-Term
Index
New

Long-Term
Index

: 2-pass streaming algorithm

• DRAM footprint proportional to #new points,
not overall index

• Periodically invoked in the background

RW-Short-Term Index

Delete List

Comparison with PLSH on 1B point dataset 11
/1

6/
20

23

52

Machine Settings Search
throughput
Queries/
second

Freshness
(Insert/
delete
latency)

Insert
/Delete
throughput

Recall Merge time Notes

Fresh-DiskANN 1 machine
128GB RAM,
48 core Xeon 8160
Samsung
PM1725a SSD

1800/s with
10 cores

<5ms
insert

Few μs for
delete

1800/sec 90% recall@1

95%, 98%
possible with
slightly higher
latency

~4.5 hours for 30M
inserts + 30M
deletes

~2.5 hours for 30M
inserts

40, 2, 1, 10
threads for
merge, insert,
delete, search

DiskANN +
rebuild daily

2 machines for
build
1 machine for
serve

“ 24 hours N/A “ 1 days to rebuild
with 2 machines

PLSH [VLDB’13] 100 machines
64GB DRAM,
8 core Xeon
E5-2670, 64GB
DRAM
(total: 800 cores,
6.4TB DRAM)

~700/sec
across 800
cores

<1sec 20000/sec 20sec for 1M
entries

Performance characteristics on 800M point
dataset 11

/1
6/

20
23

53
Mean search latencies in milliseconds for search recall of

>90% (Ls 50), >95% (Ls100) and >98% (Ls250) search
recall over the course of ramping up an index from 100M

points to 800M, in increments of 30M.

Machine:
48 cores, 2x Xeon 8160 CPUs
Samsung PM1725a SSD

Resource allocation
• Max 128GB memory used
• 40, 2, 1, 10 threads for merge, insert, delete, search

Background merge process into 800M point index takes
• ~4.5 hours to process 30M inserts and 30 deletes
• ~2.5 hours to process 30M inserts
• Compare with 2 days to rebuild index from scratch.

User facing performance
• Insert takes ~1ms, delete takes <1 microsec
• Supports 1800 inserts/sec + 1800 deletes/sec in steady

state with above thread allocation without merge backlog.

Search latency trends over 5 days
Latency spikes
during merge

Filtered Queries: Problem Statement
Given

• Point Set P = {p1, p2, p3, …, pn} in Rd,

• A set of labels {L1, L2,…, Lk},

• An association pi {Li1, Li2, ..} of labels to each point

Construct an index that efficiently supports queries that filters on the label..

• For query <q, Lq={Lq1, Lq2, …}>, find points in P nearest to q associated with any of the labels in Lq

Examples:

• Documents accessible to a subdomain (eecs.berkeley)

• Ads relevant to a market

• Shopping with price and rating filters

11
/1

6/
20

23

54

Possible approaches to filtered queries
• Post-filtering: standard ANN algorithm following by filter by label

● Not so good for “rare” labels

• Pre-filtering: construct a separate ANN index for each label
● Too many indices, since the relation between points and labels is many-to-many

• In-line filtering: Apply predicates as you traverse the index

• Goal: Match the search efficiency of “unfiltered” graph-based ANN search.
● + Streaming
● +External memory index

11
/1

6/
20

23

55

Index using filter information + vector
geometry 11

/1
6/

20
23

56

l1

l2

l3 Limit graph degree
With a prune that
balances edges
across filters

Filtered Prune Principle
For any triplet of vertices 𝑎, 𝑏, 𝑐, and constant 𝛼 ≥ 1, the directed edge (𝑎, 𝑐) can be pruned out
of the graph if

• (1) the edge (𝑎, 𝑏) is present,

• (2) the vector 𝑥𝑏 is closer to 𝑥𝑐 than 𝑥𝑎 is to 𝑥𝑐 by 𝛼, i.e., ∥𝑥𝑏 − 𝑥𝑐 ∥ ≤ (1/𝛼) ∥𝑥𝑎 − 𝑥𝑐 ∥, and

• (3) 𝐹𝑏 contains all common filter labels of 𝐹𝑎 and 𝐹𝑐 , i.e., 𝐹𝑎 ∩ 𝐹𝑐 ⊆ 𝐹𝑏 .

Datasets

Graph useful for “unfiltered” and disk search
too

Comparison with other approaches 11
/1

6/
20

23

60

re
ca

ll@
10

New algorithms that includes filter information
Orange = build + overlay
Blue = streaming version

Index of enterprise text data.
Predicate = domain within enterprise.

Specificity = % data in the domain.

Approaches used by VectorDBs
Green = IVF inline processing
Red = IVF post processing
Purple = HNSW post processing

10% specificity 0.1% specificity

How about complex predicates?
• Access-controls

• Shopping filters (maker, price, rating, color, …)

• Image search (size, copyright, background, …)

• Arbitrary SQL expressions?

Possible with query plans [AnalyticDB-V, VBase, SingleStore,…]

But can we do it algorithmically?

Current indices have low recall on out of distribution
queries

11
/1

6/
20

23

62

Recall gap

Recall vs latency plots of 3 algorithms (FAISS-IVF, HNSW, DiskANN).
Notice the gap between in-distribution (image queries, image index) and
out-of-distribution queries (text queries, image index)

Overfitting to index distribution makes OOD queries hard

• Data-dependent ANN indices overfit to index data distribution,
leading to lower recall on OOD queries

• Lower recall/efficiency when queries are drawn from different
distribution

• Typical of multi-modal scenarios: e.g., text queries – image index

• Can adapt indexing algorithms to query distribution with 10-20%
recall gains at fixed latency.

11
/1

6/
20

23

63

Histogram of Mahalanobis distances
of In-distribution queries and
Out-of-Distribution queries to the
index data

OOD-DiskANN and improved results 11
/1

6/
20

23

64

Improvements in recall
due to newer algorithms

NeurIPS’23: Billion-Scale Approximate
Nearest Neighbor Search Challenge

4 tracks with 10M size datasets

• Filtered queries: YFCC + CLIP embeddings, filter = tags

• Out-of-distribution: Yandex T2I, Text queries, Image index

• Sparse: Bag of Words high-dimensional vectors,

• Streaming: MSTuring/SpaceV embeddings

Martin Aumüller¤, Dmitry Baranchuk‡, Matthijs Douze†,

Amir Ingber*, Edo Liberty*, Frank Liu §, George Williams

¤IT University of Copenhagen, †Meta AI Research, *Pinecone, ‡Yandex Labs, §Zilliz

https://big-ann-benchmarks.com/neurips23.html

Vector indices vs Vector DB

Search Insert Delete

DiskANN graph K-V store or a
SQL database

CRUD Checkpoint
/Restore

Transaction

No globally consistent state

Shoehorn
Into legacy DB

High costs &
perf overheads;
Lost features

Challenge: Vector DB designed ground up for

11
/1

6/
20

23

67

Use cases spanning from web, enterprise, email, OS, IDE, Browser, Github repos..

Index capabilities ranging from:
● 105 to 1012 vectors
● 10-5 to 106 queries per second
● 10-4 to 105 updates per second

Trillion-scale distributed web
index for the 100K+ QPS web
(10x more than today)

Low-cost index design for
Exabyte scale data stores
with billion+ indices

Embedded index
running in OS, DevOps,
IDE, Browser

https://github.com/Microsoft/DiskANN

https://big-ann-benchmarks.com

harshasi@microsoft.com

11
/1

6/
20

23

68

