Vector search #8 – Quantization for lossy vector compression

Princeton COS579A – Edo Liberty and Matthijs Douze – 2023-11-10

Tradeoffs of vector search

3-handed tradeoff

In this class

- Mainly about the "compression" hand
- Fix size of representation
 - Because RAM is constrained
- Operating points between the two other hands

- Examples from Faiss
 - Implements many index types
 - Explore boundaries

Next page: Faiss wiki https://github.com/facebookresearch/faiss/wiki/Indexing-1G-vectors

OPO64 128.IVF1048576 HNSW32.PQ64x4fsr IVF1048576 HNSW32.PQ64x4fs PCAR32.IVF1048576(IVF1024.PQ16x4fs.RFlat).SQ8

Presented in conjunction with a Python notebook

This sign:

Means there is related content in the notebook.

Vector quantization

Vector quantization: definition

- Quantization: map a vector to an integer
 - Input is (supposed to be) continuous
 - Output is discrete
- Integer \equiv bit array of fixed size \equiv code
- Reconstruction: inverse map
 - We recover only an approximation
 - The reconstruction is lossy
- Evaluation: Mean Squared Error
 - Because it has nice arithmetic properties...
 - Invariant with d-dim rotation

$$MSE = \mathbb{E}_x \left[\| r(q(x)) - x \|^2 \right]$$

$$q: \mathbb{R}^d \mapsto \{0, ..., k-1\}$$

$$r: \{0, \dots, k-1\} \mapsto \mathbb{R}^d$$

Codes and relationship with clustering

- Numbering is sequential
 - Otherwise do a mapping in the discrete domain
- Size of codes $\lceil \log_2(k) \rceil$

- Quantization cell
 - Locus of vectors that produce the same code

$$q^{-1}(\{i\}), i \in \{0, ..., k-1\}$$

- All quantization cells are a partition of input space
- From a discrete point of view: clustering
 - Reconstruction values are called "centroids"

Lloyd's optimality conditions (reminder)

- To minimize the MSE for discrete sets
- 1: a vector should be assigned to the nearest reconstruction
 - Otherwise re-assign that vector: decrease MSE!
- 2: each centroid should be the center of mass of points assigned to it
 - Otherwise just move the center of mass: decrease MSE!
- Necessary, not sufficient

- The k-means algorithm
 - Iterate the two optimality conditions

Cases where the optimal centroids are known

• Uniform distribution

• A_x Lattice

- Uniform over a sphere
 - Integer lattice on sphere
- Unknown for Gaussian data

[Paulevé et al, Locality sensitive hashing: a comparison of hash function types and querying mechanisms, Pattern recog letters 2010]

[Sablayrolles et al, spreading vectors for similarity search, ICLR'19]

Figure 3: Voronoi regions associated with random projections (a), lattice A_2 (b) and a k-means quantizer (c,d).

How optimal is k-means?

Optimality of k-means: practical considerations

- On small scale, practical k-means is quite off from the global optimum
- On large scale we don't know!
 - NP-hard is very hard

Figure 3: Histogram of MSE results for 1000 runs of k-means with (n, k) = (24, 8). The experiment is run on 5 subsets of the same data distribution, hence the 5 plots. The exact global optimum is indicated in red. The estimate of this optimum from the k-means runs is the red dashed line.

[Augmented k-means, Touvron, Douze, Jégou, unpublished]

Difference between training and validation

- MSE can be computed on
 - $\circ \quad \text{Training vectors} \rightarrow \text{Lloyd's conditions}$
 - $\circ \quad \mbox{Validation} \rightarrow \mbox{how it's going to be used} \\ \mbox{in reality} \quad \label{eq:Validation}$
- Small and large-data regime
- Relevant parameter is n/k
 - Nb training points per centroid

Optimality of k-means: practical considerations

- As a function of the Points Per Centroid (ppc)
- Validation MSE
- Line thickness: min and max of 10 k-means runs

• It does not matter to have many initializations when k increases

Making good use of FLOPS

- Training a 100-centroid k-means on 1M vectors
 - Waste of resources?
- Given a certain computational budget
 - Balance nb of iterations and nb points per centroid

Scaling k-means

Scaling k-means

- Complexity
- Required to get larger codes
 - 3 bytes = 24 bits = 16M centroids
 - Not a very large code...
 - But a HUGE number of centroids
- Expensive stage is assignment
 - NNS problem
- Brute-force hardware scaling
 - CPU training
 - GPU training
 - Distributed training...

KMeans of 500M points to 10M centroids

144 dim, 20 iterations, 10x8 GPUs: 22h.

This is the largest k-means optimization we have done so far with Faiss. It required a version where the training set is distributed over 10 machines. The k-means logic was also re-implemented in Python. Nothing fancy, just brute force.

[Nistér Stewenius, Scalable recognition with a vocabulary tree, CVPR'06] [Muja, Lowe, Scalable Nearest Neighbor Algorithms for High Dimensional Data, PAMI'14]

Hierarchical k-means

- Inspired by bisection in 1D
- Run k-means recursively to subdivide
 - Iterate
- Often used for search
 - Basis of the FLANN library
- But sub-optimal in terms of MSE
 - See notebook

Figure 2. An illustration of the process of building the vocabulary tree. The hierarchical quantization is defined at each level by k centers (in this case k = 3) and their Voronoi regions.

Fig. 3. Projections of priority search k-means trees constructed using different branching factors: 4, 32, 128. The projections are constructed using the same technique as in [26], gray values indicating the ratio between the distances to the nearest and the second-nearest cluster centre at each tree level, so that the darkest values (ratio \approx 1) fall near the boundaries between k-means regions.

Vector quantization for search: The inverted file

The Inverted File

- Cluster the space into k clusters of vectors
 assign vectors to nearest centroid
 Aka. "coarse quantizer"
 index = inverted list structure
 - Index = inverted list structure
 maps centroid id → list of vectors assigned to it
- search procedure:
 - 1. find np << k nearest centroids to query vector
 - 2. scan the lists corresponding to the np centroids
- Objective: reduce the number of distance computations!

The Inverted File: number of centroids

• Tradeoffs

- For high-accuracy regime it is not necessary to be very selective: small nb clusters
- For low-accuracy regime it is better to filter more with clusters

- As a function of database size:
 - Coarse quantization: k distance computations
 - Scanning: (assuming balanced clusters): nprobe * n / k
 - Exercise: find optimal k as a function of n for fixed nprobe

Comparing coarse quantizers

- Useful with 2 levels
 - Reduces complexity

Vector quantization for compression

Compression and search: asymmetric case

Collection:

Symmetric vs. asymmetric comparison

- Consider asymmetric setting

 no constraint on storage of query
 keep full query vector, encode
 database vectors q(y)
- Distance estimator \circ reproduction value of the quantizer: centroid \circ approximate distance

$$\|x - y\| \approx \|x - q(y)\|$$

 $\circ \operatorname{approximate} \operatorname{nearest} \operatorname{neighbor} rgmin_i \| x - q(y_i) \|$

Distance computations with look-up tables

- For a given query x, there are k possible distances
 - Precompute a table!
 - At search time, look up the distances in the table.
 - No computations at search time, only look-ups
 - Useful if nb centroids << nb database elements

- However, this is pretty limited
 - Small codes limited recall...

Multi-codebook quantization

Multiple-codebook quantization

- Combine multiple quantizers
 - Each has its codebook
 - Separate codes, total size
- In the following:
 - Product quantization
 - Additive quantization

$$\sum_{m=1}^{M} \lceil \log_2(k_m) \rceil$$

[Jégou & al, Product quantization for nearest neighbor search, PAMI'11]

Product Quantization

16 components

 \Rightarrow 64 bit index

Multiple-codebook quantization

reconstruction value: concatenation of centroids

 $y \approx [q_1(y^1), ..., q_m(y^m)]$

distance computation: distance is additive

$$\|x-y\|^2 pprox \sum_{j=1}^m \|x^j-q_j(y^j)\|^2$$
n tableal

precompute *M* look-up tables!

Sizes & flops

	no compression	vector quantizer	product quantizer
code size	d	log2(k)	m*log2(k)
quantization cost	N/A	k*d	k*d
distance computation cost	d multiply-adds	one look-up, one add	m look-ups, m adds
number of distinct values	N/A	k	k^m

[Jégou & al, Product quantization for nearest neighbor search, PAMI'11]

Product Quantizer tradeoffs

- For a given code size
 - Code_size = M * log2(k)
- Higher k (and lower M)
 - Better accuracy
 - Larger quantization tables (slower)
- When $k \rightarrow k^2$ and $M \rightarrow M/2$
 - The "small" PQ can be expressed in the "large" PQ
- Extremes:
 - $\circ \quad M=1 \rightarrow full \text{ k-means}$
 - $\circ \quad k=1 \rightarrow \text{binary encoding}$

Optimized product quantization

- Basic PQ splits the vectors into arbitrary subvectors
 - Accuracy is dependent on how well the subvectors are decorrelated
 - Worst case: the vector actually repeats M times the same sub-vector!
 - \rightarrow then it becomes equivalent to a single k-means
- OPQ trains a rotation matrix to optimally decorrelate them
 - Iterative optimization

Step (i): Fix *R* and optimize $\{\mathcal{C}^m\}_{m=1}^M$. Denote $\hat{\mathbf{x}} = R\mathbf{x}$ and $\hat{\mathbf{c}} = R\mathbf{c}$. Since *R* is orthogonal, we have $\|\mathbf{x} - \mathbf{c}\|^2 = \|\hat{\mathbf{x}} - \hat{\mathbf{c}}\|^2$. With *R* fixed, (4) then becomes:

$$\min_{\mathcal{C}^{1},...,\mathcal{C}^{m}} \sum_{\hat{\mathbf{x}}} \|\hat{\mathbf{x}} - \hat{\mathbf{c}}(i(\hat{\mathbf{x}}))\|^{2}, \qquad (5)$$

s.t. $\hat{\mathbf{c}} \in \mathcal{C}^{1} \times ... \times \mathcal{C}^{M}.$

This is the same problem as PQ in (2). We can separately run k-means in each subspace to compute the sub-codebooks.

Step (ii): Fix $\{\mathcal{C}^m\}_{m=1}^M$ and optimize R. Since $\|\mathbf{x} - \mathbf{c}\|^2 = \|R\mathbf{x} - \hat{\mathbf{c}}\|^2$, the sub-problem becomes:

$$\min_{R} \sum_{\mathbf{x}} \|R\mathbf{x} - \hat{\mathbf{c}}(i(\hat{\mathbf{x}}))\|^{2}, \qquad (6)$$

s.t. $R^{\mathrm{T}}R = I.$

The codeword $\hat{\mathbf{c}}(i(\hat{\mathbf{x}}))$ is fixed in this subproblem. It is the concatenation of the M sub-codewords of the subvectors in $\hat{\mathbf{x}}$. We denote $\hat{\mathbf{c}}(i(\hat{\mathbf{x}}))$ as \mathbf{y} . Given n training samples, we denote X and Y as two D-by-n matrices whose columns are the samples \mathbf{x} and \mathbf{y} respectively. Then we can rewrite (6) as:

$$\begin{split} \min_{R} \|RX - Y\|_{\mathrm{F}}^{2}, \quad (7) \\ s.t. \quad R^{\mathrm{T}}R = I, \end{split}$$

Additive quantization

[Chen et al, Approximate Nearest Neighbor Search by Residual Vector Quantization, sensors'10] [Liu Shicong & al, Improved Residual Vector Quantization for High-dimensional Approximate Nearest **Residual quantization** Neighbor Search, AAAI'15]

- Simple principle:
 - Sequential encoding of residuals

$$q_1(x) \to q_2(x - r_1(q_1(x))) \to q_3(x - r_1(...) - r_2(...)) \to ...$$

- Does not work too well by default
 - Due to greedy search
 - Extend with beam search

(a) Recall@4 on SIFT1M, (b) Recall@4 on GIST1M, different code length different code length

 $- - IRVQ \longrightarrow RVQ \longrightarrow AQ \longrightarrow OPQ \longrightarrow PQ$

Additive quantization

- Use multiple codebooks
 - But in full dimension d
- More capacity
 - PQ is a special case of AQ (where subspaces are set to 0)
- Encoding is not easy
 - No independent optimization per sub-vector...
 - Complexity of exact solution grows exponentially with M
- They propose:
 - Build the code sequentially by picking the element in the remaining codebooks that most reduces the residual
 - Also use a beam search

["LSQ++: Lower running time and higher recall in multi-codebook quantization", Martinez, et al. ECCV 2018.]

Local search quantization

- Start from an initial (OPQ...)
- Encoding with simulated annealing
 - Change one code, compute loss
 - Accept the new code with some probability
 - Decreasing probability of accepting sub-optimal solution over iterations
- At training time: iterate
 - Encoding training set using current codebook
 - \circ ~ Estimate codebook from codes and vectors \rightarrow LS problem

$$\min_{C} \|X - CB\|_{F}^{2};$$

Training vectors (d*n) Codebooks (d * (KM)) codes (KM * n, sparse)

Fast search with additive quantization

• With the decomposition

$$x \approx x' = T_1[i_1] + \dots + T_M[i_M]$$

• We can pre-compute

 $\operatorname{LUT}_{m}[i] = \langle T_{m}[i], q \rangle \quad \forall m = 1..M, i = 1..K_{m}$

• Which allows to compute the dot product (fast!)

 $\langle q, x \rangle \approx \langle q, x' \rangle = LUT_1[i_1] + \dots + LUT_m[i_M]$

• But not L2 distances...

Consta

• However, we can use

$$||q - x'||^2 = ||q||^2 + ||x'||^2 - 2\langle q, x'|$$

stored (approx)

computed with LUTs

Scalar quantization

- Uniform scalar quantization
 - Map each dimension to an int8 (or int4...)
- Useful for moderate compression
 - Float32 \rightarrow int8 or int4 (4x to 8x compression)
- Often used for quasi-lossless storage
- Fast and accurate
- Special case of PQ
 - 1 dimension per component
 - Uniform "centroids"
- Be careful with imbalanced dimensions
 - Eg. output of a PCA

Nesting of quantization methods

- Each quantizer has an assignment rule to a centroid
- Only the full VQ (k-means) represents the centroids explicitly
- Others have implicit centroids with more or less constraints / capacity
- Nested set of quantizers
 - More general slower, more accurate
 - More specific faster, less accurate

- In practice:
 - (uniform) scalar quantization loses almost no precision
 - PQ is a good tradeoff to reduce by < 4 bits per dim

Neural quantization methods

[Neural Discrete Representation Learning, Van den Oord et al, NIPS'17]

Vector Quantised-Variational AutoEncoder

- Auto-encoder with a discrete bottleneck
- Applied to the image domain initially

• At encoding time: nearest centroid assignment

VQ-VAE training

• Loss

- Uses stop-gradients (sg)
- To keep some components fixed

$$L = \log p(x|z_q(x)) + \|sg[z_e(x)] - e\|_2^2 + \beta \|z_e(x) - sg[e]\|_2^2,$$

Data term embeddings \rightarrow codebook codebook \rightarrow embeddings

During forward computation the nearest embedding $z_q(x)$ (equation 2) is passed to the decoder, and during the backwards pass the gradient $\nabla_z L$ is passed unaltered to the encoder. Since the output

VQ-VAE results

• Impactful in the image (and other media) domain

Figure 2: Left: ImageNet 128x128x3 images, right: reconstructions from a VQ-VAE with a 32x32x1 latent space, with K=512.

- In the vector domain, limited impact
 - Not competitive with multi-codebook quantizers
 - Hard to take advantage of an encoder in a space that is already vectorial

[Spreading vectors for similarity search, Sablayrolles et al, ICLR'19] The catalyzer

- Transform input vectors to make them easier to index
- Map with trained function
 - Conserves neighborhood relations
- Fixed quantizer
 - We have good quantizers for uniform data
 - Centroids = intersection of the integer grid with a sphere

The catalyzer

• Loss that enforces a uniform output distribution

- Local loss based on local entropy estimator (Kozachenko-Leononenko)
 - Based on the log of the distance to the nearest neighbor

$$\mathcal{L}_{ ext{KoLeo}} = -rac{1}{n}\sum_{i=1}^n \log(
ho_{n,i})$$

The catalyzer: lattice quantizer

- Number of centroids as a function of radius in 24 dim
- Assignment is tricky...

Good perf

w.r.t. PQ

[Morozov & Babenko Unsupervised Neural Quantization for Compressed-Domain Similarity Search, ICCV'19]

Unsupervised Neural Quantization

- Inspired by additive quantizers
- Use a neural net to map to M codebooks
 - Total output dim d * M

- Reconstruct with
 - Additive quantizer
 - Decoder network
- Enforce that intermediate additive quantizer gives relatively good neighbors

UNQ training

• Loss

- 2-level search:
 - Search with intermediate representation first: additive, fast
 - Re-rank shortlist with full decoding

Polysemous codes

[Douze et al, Polysemous codes, ECCV'16]

Several decoders

- Family of methods where codes can be decoded in two ways
 - Fast / inaccurate
 - Slow / accurate
- Polysemous codes paper:
 - Fast: binary search
 - Slow: product quantization
 - Speed factor 6
- UNQ:
 - Fast: additive quantizer
 - Slow: full decoding
 - Speed factor 8.5
- At search time
 - Shortlist with fast codes
 - Rerank with slow codes (100-1000)

[Amara et al, Nearest neighbor search with compact codes: A decoder perspective, ICMR'22]

Arbitrary decoders

- Given an encoder
 - Generate codes for a training set
- Fit an arbitrarily large decoder
- Higher-level multi-codebook quantizer
 - o cf. the least-squares decoder
- Neural net
 - easy to train
 - no discretization, strong supervision

Figure 4: Accuracy vs. search time on the BigANN1M dataset when re-ranking: The NN decoder re-orders the top PQ results.

Practical implementation: IVFPQ

[Jégou & al, Product quantization for nearest neighbor search, PAMI'11]

Multiple quantization levels

Coarse quantizer + residual quantizer
 reproduction value:

 $y \approx q_{\rm c}(y) + q_{\rm f}(y - q_{\rm c}(y))$

coarse = k-means quantizer, fine = product quantizer
 inverted file structure

At search time: select subset of centroids
 within inverted list: normal PQ search
 with look-up tables

[Johnson & al, , PAMI'11]

At the basis of many implementations

- Faiss IndexIVFPQ
- SCANN
- ANNS search over the coarse quantizer centroids
 - ANNS improvements benefit the search
- Relatively easy to optimize in hardware
 - GPU
 - SIMD

At the basis of many implementations

- Faiss IndexIVFPQ
- SCANN
- ANNS search over the coarse quantizer centroids
 - ANNS improvements benefit the search
- Relatively easy to optimize in hardware
 - GPU
 - SIMD

["Quicker ADC : Unlocking the Hidden Potential of Product Quantization with SIMD", André et al, PAMI'19]

SIMD implementation of search

- PQ search bottleneck: memory look-ups
- Store look-up tables in registers

	quantizer m										quantizer m + 1																					
address (bytes)	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
bits 03	0	8	1	9	2	10	3	11	4	12	5	13	6	14	7	15	0	8	1	9	2	10	3	11	4	12	5	13	6	14	7	15
bits 47	16	24	17	25	18	26	19	27	20	28	21	29	22	30	23	31	16	24	17	25	18	26	19	27	20	28	21	29	22	30	23	31

- Requires very small codebooks: log(K) = 4 bits
- Fast / inaccurate
 - Useful to do re-ranking

[Billion-scale similarity search with GPUs. Johnson et al, Trans big data, 2021]

GPU search

- Particularly efficient for brute force search
- Fast arithmetic
- High mem bandwidth
- BUT high latencies
 - Hard to implement
 branching algorithms

Conclusion

- Vector compression is required for large scale
- Always keep an eye on traeoffs
 - There are always a few "active" constraints

- Next class By Harsha on graph indexes
 - Very efficient and versatile
 - \circ Use lots of memory \rightarrow compression is useful!

END