
Vector search #8 –
Quantization for lossy vector

compression

Princeton COS579A – Edo Liberty and Matthijs Douze – 2023-11-10

Tradeoffs of vector search

Accuracy
(% of actual nearest neighbors

found at rank 1)

Memory (RAM)
(bytes per vector) Search speed

(ms per vector)

Exhaustive
Search

Compression
Pruning

3-handed tradeoff

In this class

● Mainly about the “compression” hand
● Fix size of representation

○ Because RAM is constrained
● Operating points between the two other hands

● Examples from Faiss
○ Implements many index types
○ Explore boundaries

Next page: Faiss wiki
https://github.com/facebookresearch/faiss/wiki/Indexing-1G-vectors

Speed:
Queries per
second
(Log scale)

Accuracy:
1-recall@1

Each curve
= one type
of index

Memory budget: max
32 bytes per vector

Presented in conjunction with a Python notebook

● This sign:

● Means there is related content in the notebook.

Vector quantization

Vector quantization: definition

● Quantization: map a vector to an
integer

○ Input is (supposed to be) continuous
○ Output is discrete

● Integer ≡ bit array of fixed size ≡ code
● Reconstruction: inverse map

○ We recover only an approximation
○ The reconstruction is lossy

● Evaluation: Mean Squared Error
○ Because it has nice arithmetic properties…
○ Invariant with d-dim rotation

Codes and relationship with clustering

● Numbering is sequential
○ Otherwise do a mapping in the discrete domain

● Size of codes

● Quantization cell
○ Locus of vectors that produce the same code

● All quantization cells are a partition of input space
● From a discrete point of view: clustering

○ Reconstruction values are called “centroids”

Lloyd’s optimality conditions (reminder)

● To minimize the MSE for discrete sets
● 1: a vector should be assigned to the nearest reconstruction

○ Otherwise re-assign that vector: decrease MSE!
● 2: each centroid should be the center of mass of points assigned to it

○ Otherwise just move the center of mass: decrease MSE!
● Necessary, not sufficient

● The k-means algorithm
○ Iterate the two optimality conditions

Cases where the optimal
centroids are known

● Uniform distribution
○ A_x Lattice

● Uniform over a sphere
○ Integer lattice on sphere

● Unknown for Gaussian data

[Paulevé et al, Locality sensitive hashing: a comparison of hash
function types and querying mechanisms, Pattern recog letters
2010]

[Sablayrolles et al, spreading vectors for similarity search, ICLR’19]

How optimal is k-means?

Optimality of k-means: practical considerations

● On small scale,
practical k-means is
quite off from the
global optimum

● On large scale we
don’t know!

○ NP-hard is very hard

[Augmented k-means, Touvron, Douze, Jégou, unpublished]

Difference between training and validation

● MSE can be computed on
○ Training vectors → Lloyd’s conditions
○ Validation → how it’s going to be used

in reality
● Small and large-data regime
● Relevant parameter is n/k

○ Nb training points per centroid

Overfitting train-val convergence

Optimality of k-means: practical considerations

● As a function of the Points Per Centroid (ppc)
● Validation MSE
● Line thickness: min and max of 10 k-means runs

● It does not matter to have many initializations when k increases

Making good use of FLOPS

● Training a 100-centroid k-means on 1M vectors
○ Waste of resources?

● Given a certain computational budget
○ Balance nb of iterations and

nb points per centroid

Scaling k-means

Scaling k-means

● Complexity
● Required to get larger codes

○ 3 bytes = 24 bits = 16M centroids
○ Not a very large code…
○ But a HUGE number of centroids

● Expensive stage is assignment
○ NNS problem

● Brute-force hardware scaling
○ CPU training
○ GPU training
○ Distributed training…

Hierarchical k-means
● Inspired by bisection in 1D
● Run k-means recursively to subdivide

○ Iterate
● Often used for search

○ Basis of the FLANN library
● But sub-optimal in terms of MSE

○ See notebook

[Nistér Stewenius, Scalable recognition with a vocabulary tree, CVPR’06]
[Muja, Lowe, Scalable Nearest Neighbor Algorithms
for High Dimensional Data, PAMI’14]

Vector quantization for search:
The inverted file

● Cluster the space into k clusters of vectors
○ assign vectors to nearest centroid
○ Aka. “coarse quantizer”

● index = inverted list structure
○ maps centroid id → list of vectors assigned

to it
● search procedure:
○ 1. find np << k nearest centroids to query

vector
○ 2. scan the lists corresponding to the np

centroids
● Objective: reduce the number of distance

computations!

The Inverted File

The Inverted File: number of centroids

● Tradeoffs
○ For high-accuracy regime it is not necessary to be very

selective: small nb clusters
○ For low-accuracy regime it is better to filter more with

clusters

● As a function of database size:
○ Coarse quantization: k distance computations
○ Scanning: (assuming balanced clusters):

nprobe * n / k
○ Exercise: find optimal k as a function of n for fixed nprobe

Comparing coarse quantizers

● Useful with 2 levels
○ Reduces complexity

Vector quantization for compression

Collection:

Query:
em

be
dd

in
g

Index

Result:

Compression and search: asymmetric case

quantization

●Consider asymmetric setting
○ no constraint on storage of query
○ keep full query vector, encode

database vectors

●Distance estimator
○reproduction value of the quantizer: centroid
○approximate distance

○approximate nearest neighbor

Symmetric vs. asymmetric comparison

Distance computations with look-up tables

● For a given query x, there are k possible distances
○ Precompute a table!
○ At search time, look up the distances in the table.
○ No computations at search time, only look-ups
○ Useful if nb centroids << nb database elements

● However, this is pretty limited
○ Small codes – limited recall…

Multi-codebook quantization

Multiple-codebook quantization

● Combine multiple quantizers
○ Each has its codebook
○ Separate codes, total size

● In the following:
○ Product quantization
○ Additive quantization

Product Quantization

8 bits

16 components

⇒ 64 bit index

y1 y2 y3 y4 y5 y6 y7 y8

q1 q2 q3 q4 q5 q6 q7 q8

q1(y1) q2(y2) q3(y3) q4(y4) q5(y5) q6(y6) q7(y7) q8(y8)

256
centrpods

[Jégou & al, Product quantization for nearest neighbor search, PAMI'11]

●reconstruction value: concatenation of centroids

●distance computation: distance is additive

●precompute M look-up tables!

Multiple-codebook quantization

Sizes & flops

no compression vector quantizer product quantizer

code size d log2(k) m*log2(k)
quantization cost N/A k*d k*d

distance
computation cost

d multiply-adds one look-up, one add m look-ups, m adds

number of distinct
values

N/A k k^m

Product Quantizer tradeoffs

● For a given code size
○ Code_size = M * log2(k)

● Higher k (and lower M)
○ Better accuracy
○ Larger quantization tables (slower)

● When k → k^2 and M → M/2
○ The “small” PQ can be expressed in

the “large” PQ
● Extremes:

○ M=1 → full k-means
○ k=1 → binary encoding

[Jégou & al, Product quantization for nearest neighbor search, PAMI'11]

Optimized product quantization

● Basic PQ splits the vectors into arbitrary
subvectors

○ Accuracy is dependent on how well the subvectors are
decorrelated

○ Worst case: the vector actually repeats M times the
same sub-vector!
→ then it becomes equivalent to a single k-means

● OPQ trains a rotation matrix to optimally
decorrelate them

○ Iterative optimization

[Ge & al, Optimized Product Quantization, PAMI'13]

Additive quantization

Residual quantization

● Simple principle:
○ Sequential encoding of residuals

● Does not work too well by default
○ Due to greedy search
○ Extend with beam search

●

[Chen et al, Approximate Nearest Neighbor Search by Residual Vector Quantization, sensors’10]
[Liu Shicong & al, Improved Residual Vector Quantization for High-dimensional Approximate Nearest

Neighbor Search, AAAI'15]

Additive quantization

● Use multiple codebooks
○ But in full dimension d

● More capacity
○ PQ is a special case of AQ (where

subspaces are set to 0)
● Encoding is not easy

○ No independent optimization per
sub-vector…

○ Complexity of exact solution grows
exponentially with M

● They propose:
○ Build the code sequentially by picking the

element in the remaining codebooks that
most reduces the residual

○ Also use a beam search

[Babenko & Lempitsky,Additive quantization for extreme vector compression, CVPR’14]

Local search quantization
● Start from an initial (OPQ…)
● Encoding with simulated annealing

○ Change one code, compute loss
○ Accept the new code with some probability
○ Decreasing probability of accepting sub-optimal solution over iterations

● At training time: iterate
○ Encoding training set using current codebook
○ Estimate codebook from codes and vectors → LS problem

["LSQ++: Lower running time and higher recall in multi-codebook quantization",
Martinez, et al. ECCV 2018.]

Training vectors (d*n) Codebooks (d * (KM)) codes (KM * n, sparse)

Fast search with additive quantization
● With the decomposition

● We can pre-compute

● Which allows to compute the dot product (fast!)

● But not L2 distances…
○ However, we can use

Constant stored (approx) computed with LUTs

Scalar quantization

● Uniform scalar quantization
○ Map each dimension to an int8 (or int4…)

● Useful for moderate compression
○ Float32 → int8 or int4 (4x to 8x compression)

● Often used for quasi-lossless storage
● Fast and accurate
● Special case of PQ

○ 1 dimension per component
○ Uniform “centroids”

● Be careful with imbalanced dimensions
○ Eg. output of a PCA

Nesting of quantization methods

● Each quantizer has an assignment rule to a
centroid

● Only the full VQ (k-means) represents the
centroids explicitly

● Others have implicit centroids with more or
less constraints / capacity

● Nested set of quantizers
○ More general – slower, more accurate
○ More specific – faster, less accurate

● In practice:
○ (uniform) scalar quantization loses almost no

precision
○ PQ is a good tradeoff to reduce by < 4 bits per dim

Additive quantizer

Product quantizer

Scalar quantizer

Binarization

Vector quantizer

Neural quantization methods

Vector Quantised-Variational AutoEncoder

● Auto-encoder with a discrete bottleneck
● Applied to the image domain initially

● At encoding time: nearest centroid assignment

[Neural Discrete Representation Learning, Van den Oord et al, NIPS’17]

VQ-VAE training

● Loss
○ Uses stop-gradients (sg)
○ To keep some components fixed

Data term embeddings → codebook codebook → embeddings

VQ-VAE results

● Impactful in the image (and other media) domain

● In the vector domain, limited impact
○ Not competitive with multi-codebook quantizers
○ Hard to take advantage of an encoder in a space that is already vectorial

The catalyzer

● Transform input vectors to make them easier to index
● Map with trained function

○ Conserves neighborhood relations
● Fixed quantizer

○ We have good quantizers for uniform data
○ Centroids = intersection of the integer grid with a sphere

[Spreading vectors for similarity search, Sablayrolles et al, ICLR’19]

● Loss that enforces a uniform output distribution

● Local loss based on local entropy estimator (Kozachenko-Leononenko)
○ Based on the log of the distance to the nearest neighbor

The catalyzer

The catalyzer: lattice quantizer

● Number of centroids as a function of
radius in 24 dim

● Assignment is tricky…

● Good perf
w.r.t. PQ

Unsupervised Neural Quantization
● Inspired by additive quantizers
● Use a neural net to map to M codebooks

○ Total output dim d * M

● Encode each dimension separately
● Reconstruct with

○ Additive quantizer
○ Decoder network

● Enforce that intermediate additive quantizer gives relatively good neighbors

[Morozov & Babenko Unsupervised Neural Quantization for Compressed-Domain
Similarity Search, ICCV’19]

UNQ training

● Loss

● 2-level search:
○ Search with intermediate representation first: additive, fast
○ Re-rank shortlist with full decoding

MSE loss triplet loss avoid code collapse

Polysemous codes

Several decoders

● Family of methods where codes can be decoded in two ways
○ Fast / inaccurate
○ Slow / accurate

● Polysemous codes paper:
○ Fast: binary search
○ Slow: product quantization
○ Speed factor 6

● UNQ:
○ Fast: additive quantizer
○ Slow: full decoding
○ Speed factor 8.5

● At search time
○ Shortlist with fast codes
○ Rerank with slow codes (100-1000)

[Douze et al, Polysemous codes, ECCV’16]

Arbitrary decoders

● Given an encoder
○ Generate codes for a training set

● Fit an arbitrarily large decoder
● Higher-level multi-codebook quantizer

○ cf. the least-squares decoder
● Neural net

○ easy to train
○ no discretization, strong supervision

[Amara et al, Nearest neighbor search with compact codes: A decoder perspective, ICMR’22]

Practical implementation: IVFPQ

● Coarse quantizer + residual quantizer
○reproduction value:

● coarse = k-means quantizer, fine = product quantizer
○inverted file structure

● At search time: select subset of centroids
○within inverted list: normal PQ search

with look-up tables

Multiple quantization levels

query PQ codes

[Jégou & al, Product quantization for nearest neighbor search, PAMI'11]

At the basis of many implementations

● Faiss IndexIVFPQ
● SCANN
● ANNS search over the coarse quantizer centroids

○ ANNS improvements benefit the search
● Relatively easy to optimize in hardware

○ GPU
○ SIMD

[Johnson & al, , PAMI'11]

At the basis of many implementations

● Faiss IndexIVFPQ
● SCANN
● ANNS search over the coarse quantizer centroids

○ ANNS improvements benefit the search
● Relatively easy to optimize in hardware

○ GPU
○ SIMD

SIMD implementation of search
● PQ search bottleneck: memory look-ups
● Store look-up tables in registers

● Requires very small codebooks: log(K) = 4 bits
● Fast / inaccurate

○ Useful to do re-ranking

["Quicker ADC : Unlocking the Hidden Potential of Product Quantization with SIMD",
André et al, PAMI'19]

GPU search

[Billion-scale similarity search with GPUs. Johnson et al, Trans big data, 2021]

● Particularly efficient for
brute force search

● Fast arithmetic
● High mem bandwidth
● BUT high latencies

○ Hard to implement
branching algorithms

Conclusion

● Vector compression is required for large scale
● Always keep an eye on traeoffs

○ There are always a few “active” constraints

● Next class By Harsha on graph indexes
○ Very efficient and versatile
○ Use lots of memory → compression is useful!

END

