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Tradeoffs of vector search
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In this class

e Mainly about the “compression” hand
e Fix size of representation
o Because RAM is constrained
e Operating points between the two other hands

e Examples from Faiss
o Implements many index types
o Explore boundaries

Next page: Faiss wiki
https://github.com/facebookresearch/faiss/wiki/Indexing-1G-vectors
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Presented in conjunction with a Python notebook

e This sign: ?

e Means there is related content in the notebook.



Vector quantization



Vector quantization: definition

Quantization: map a vector to an
integer
o Inputis (supposed to be) continuous
o Output is discrete

Integer = bit array of fixed size = code

Reconstruction: inverse map
o  We recover only an approximation
o The reconstruction is lossy
Evaluation: Mean Squared Error

o Because it has nice arithmetic properties...
o Invariant with d-dim rotation

q:R*— {0,....k—1}

r:{0,...,.k—1} — R?

MSE = E, [||Ir(¢(z)) — z||?]



Codes and relationship with clustering

e Numbering is sequential
o  Otherwise do a mapping in the discrete domain

e Size of codes ﬂog2(k)]

e Quantization cell
o Locus of vectors that produce the same code

¢ '({i}), i€{0,...k—1}

e All quantization cells are a partition of input space

e From a discrete point of view: clustering
o Reconstruction values are called “centroids”




Lloyd’s optimality conditions (reminder)

e To minimize the MSE for discrete sets
e 1. a vector should be assigned to the nearest reconstruction
o Otherwise re-assign that vector: decrease MSE!

e 2: each centroid should be the center of mass of points assigned to it
o Otherwise just move the center of mass: decrease MSE!

e Necessary, not sufficient

e The k-means algorithm
o lterate the two optimality conditions



Cases where the optimal
centroids are known

e Uniform distribution
o A _xLattice

e Uniform over a sphere
o Integer lattice on sphere

e Unknown for Gaussian data

[Paulevé et al, Locality sensitive hashing: a comparison of hash (c) k-means (d) k-means

function types and querying mechanisms, Pattern recog letters Uniform distribution Gaussian distribution
2010]

Figure 3: Voronoi regions associated with random projections (a), lattice A; (b)

[Sablayrolles et al, spreading vectors for similarity search, ICLR’19] and 2 k.means quantizer (c.d).



How optimal is k-means?



Optimality of k-means: practical considerations

On small scale,
practical k-means is
quite off from the
global optimum

On large scale we

don’t know!
o NP-hard is very hard
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Figure 3: Histogram of MSE results for 1000 runs of k-means with (n, k) = (24, 8). The experiment
is run on 5 subsets of the same data distribution, hence the 5 plots. The exact global optimum is
indicated in red. The estimate of this optimum from the k-means runs is the red dashed line.

[Augmented k-means, Touvron, Douze, Jégou, unpublished]



Difference between training and validation

MSE can be computed on

(@)

(@)

Small and large-data regime

Training vectors — Lloyd’s conditions
Validation — how it's going to be used

in reality

Relevant parameter is n/k

(@)
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gquantization error

Optimality of k-means: practical considerations

e As a function of the Points Per Centroid (ppc)
e Validation MSE
e Line thickness: min and max of 10 k-means runs
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e [t does not matter to have many initializations when k increases



Making good use of FLOPS

e Training a 100-centroid k-means on 1M vectors
o Waste of resources?

e Given a certain computational budget k=16384

o Balance nb of iterations and
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Scaling k-means



Scaling k-means

e Complexity

e Required to get larger codes
o 3 bytes = 24 bits = 16M centroids
o Not a very large code...
o Buta HUGE number of centroids
e Expensive stage is assignment
o NNS problem

. % Matthijs Douze
e Brute-force hardware scaling ) varcns, 2010 - @
o CPU training KMeans of 500M points to 10M centroids

o GPU training 144 dim, 20 iterations, 10x8 GPUs: 22h.

. . - This is the largest k-means optimization we have done so far with Faiss. It required a
© DIStrIbUted trammg e version where the training set is distributed over 10 machines. The k-means logic was

also re-implemented in Python. Nothing fancy, just brute force.



[Nistér Stewenius, Scalable recognition with a vocabulary tree, CVPR’06]
[Muja, Lowe, Scalable Nearest Neighbor Algorithms
for High Dimensional Data, PAMI’14]

Hierarchical k-means

e Inspired by bisection in 1D
e Run k-means recursively to subdivide
o lterate

e Often used for search
o Basis of the FLANN library

. . Figure 2. An illustration of the process of building the vocabulary

() But Su b_o pt' m aI N te rms Of M S E tree. The hierarchical quantization is defined at each level by k

centers (in this case k = 3) and their Voronoi regions.
o See notebook p

Fig. 3. Projections of priority search k-means trees constructed using different branching factors: 4, 32, 128. The projections are constructed using
the same technique as in [26], gray values indicating the ratio between the distances to the nearest and the second-nearest cluster centre at each
tree level, so that the darkest values (ratio ~ 1) fall near the boundaries between k-means regions.



Vector quantization for search:
The inverted file



The Inverted File ﬁ

e Cluster the space into k clusters of vectors
o assign vectors to nearest centroid
o Aka. “coarse quantizer”
e index = inverted list structure
o maps centroid id — list of vectors assigned
to it
e search procedure:
o 1. find np << k nearest centroids to query
vector
o 2. scan the lists corresponding to the np
centroids
e Objective: reduce the number of distance
computations!




The Inverted File: number of centroids

e Tradeoffs
o  For high-accuracy regime it is not necessary to be very
selective: small nb clusters
o Forlow-accuracy regime it is better to filter more with
clusters

time (ms)
w
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e As a function of database size:
o Coarse quantization: k distance computations
o  Scanning: (assuming balanced clusters):
nprobe * n/k
o Exercise: find optimal k as a function of n for fixed nprobe
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Comparing coarse quantizers

e Useful with 2 levels

o Reduces complexity bigann 1M
- Flat train 14.08s
inverted multi-index train 0.63s /
- residual coarse quantizer train 20.63s /
- 2-level clustering 7.48s /
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Vector quantization for compression



Compression and search: asymmetric case

Collection:

d
Y1,Y2, -3 Yn c R N
quantization

2 ’cl, esCn € {1, ..., k}
| : : :

S

M

7
&

embedding

Result: k — argmin,_, _ |lz — r(c;)||?

?



Symmetric vs. asymmetric comparison

e Consider asymmetric setting
o no constraint on storage of query
o keep full query vector, encode
database vectors q(y)

e Distance estimator
oreproduction value of the quantizer: centroid symmetric case asymmetric case
oapproximate distance

lz =yl = llz —a(y)|

oapproximate nearest neighbor P
argmin; ||z — q(y;)||



Distance computations with look-up tables

e For agiven query x, there are k possible distances

o Precompute a table!

o At search time, look up the distances in the table.
o No computations at search time, only look-ups

o Useful if nb centroids << nb database elements

A

e However, this is pretty limited
o Small codes — limited recall...



Multi-codebook quantization



Multiple-codebook quantization

e Combine multiple quantizers

o Each has its codebook M

o Separate codes, total size Y _ [logy (km)]
e In the following: "

o  Product quantization
o Additive quantization



[Jégou & al, Product quantization for nearest neighbor search, PAMI'11]

Product Quantization

16 components
|

O OO0 OO S

q,(y) q,(y,) q4(y5) q,y,) q5(¥5) q.(yy) q,(y,) de(Ye)

—
8 bits .
— 64 bit index



Multiple-codebook quantization

® reconstruction value: concatenation of centroids

y =l (y'), - am(y™)]

@ distance computation: distance is additive

m
lz =yl ~ ) lle? —a;(47)II?

® precompute M look-up tables! /=1



Sizes & flops

_ no compression | vector quantizer | product quantizer

| codesize | log2(k) m*log2(k)

quantization cost N/A k*d k*d

d multiply-adds ~ one look-up, one add m look-ups, m adds
computation cost
values



[Jégou & al, Product quantization for nearest neighbor search, PAMI'11]

Product Quantizer tradeoffs

e For a given code size P

o Code_size =M * log2(k)
e Higher k (and lower M)

o Better accuracy
o Larger quantization tables (slower)

e Whenk — k"2 and M — M/2
o The “small” PQ can be expressed in
the “large” PQ 02
e Extremes:

o M=1 — full k-means
o k=1 — binary encoding

mAP
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[Ge & al, Optimized Product Quantization, PAMI'13]

Optimized product quantization

e Basic PQ splits the vectors into arbitrary

subvectors

o Accuracy is dependent on how well the subvectors are
decorrelated

o Worst case: the vector actually repeats M times the
same sub-vector!
— then it becomes equivalent to a single k-means

e OPAQ trains a rotation matrix to optimally

decorrelate them
o Iterative optimization

Step (i): Fix R and optimize {C™}M_,.

Denote X = Rx and ¢ = Rc. Since R is orthogonal,
we have ||x — ¢||2 = ||% — &||%. With R fixed, (4) then
becomes:

.....

i > [I% = &)1, (5)
st. €€l x..xcM.

This is the same problem as PQ in (2). We can sepa-
rately run k-means in each subspace to compute the
sub-codebooks.

Step (ii): Fix {C™}}_, and optimize R.

Since [|x — c||? = ||[Rx — &||%, the sub-problem
becomes:
. _ali(s 2
ménzx:IIRx eEENI%, (6)
st BR=I.

The codeword &(i(%)) is fixed in this subproblem. It is
the concatenation of the M sub-codewords of the sub-
vectors in %. We denote &(i(%)) as y. Given n training
samples, we denote X and Y as two D-by-n matrices
whose columns are the samples x and y respectively.
Then we can rewrite (6) as:

min || RX —-Y|3, 7)
st. RIR=1,



Additive quantization



[Chen et al, Approximate Nearest Neighbor Search by Residual Vector Quantization, sensors’10]
[Liu Shicong & al, Improved Residual Vector Quantization for High-dimensional Approximate Nearest

ReSidual quantization Neighbor Search, AAAI'15]

e Simple principle:
o Sequential encoding of residuals

q1(z) = q2(z — ri(q1(x))) = gz(z —r1(...) —ra(..) — ...

e Does not work too well by default

o Due to greedy search

o Extend with beam search 0.9
0.7
0.5
0.3

0.1 > - L }
32 64 128 32 64 128
Code length (bit) Code length (bit)

(a) Recall@4 on SIFTIM, (b) Recall@4 on GIST1M,
different code length different code length

——JRVQ ——RVQ —+— AQ = OPQ ——PQ




[Babenko & Lempitsky,Additive quantization for extreme vector compression, CVPR’14]

Additive quantization

Use multiple codebooks
o  Butin full dimension d

More capacity
o PQis a special case of AQ (where
subspaces are set to 0)

Encoding is not easy
o No independent optimization per
sub-vector...
o  Complexity of exact solution grows
exponentially with M

They propose:
Build the code sequentially by picking the
element in the remaining codebooks that
most reduces the residual
o Also use a beam search

input vector

PQ) codebooks

PQ code [24 1 3]

()%

SY00(APOd

AQ code [3 21 4]



['LSQ++: Lower running time and higher recall in multi-codebook quantization®,
Martinez, et al. ECCV 2018.]

Local search quantization

e Start from an initial (OPQ...)

e Encoding with simulated annealing

o Change one code, compute loss
o Accept the new code with some probability
o Decreasing probability of accepting sub-optimal solution over iterations

e At training time: iterate

o Encoding training set using current codebook
o Estimate codebook from codes and vectors — LS problem

min|| X — CB||%;

/

Training vectors (d*n) Codebooks (d * (KM)) codes (KM * n, sparse)



Fast search with additive quantization

e With the decomposition
r~x = Tl[’il] + ... —|—TM[’I:M]

e \We can pre-compute
LUT,,[i| = (T\]il,q) Ym=1.M,i=1.K,,

e Which allows to compute the dot product (fast!)

(q,z) =~ {(q, 2"y = LUT [i1] + ... + LUT,,[ipr]

e But not L2 distances...
o However, we can use P
lg —2'|* = |lgl|* + [|="||* — 2(g, z")

Constant stored (approx) computed with LUTs



Scalar quantization

e Uniform scalar quantization
o Map each dimension to an int8 (or int4...)

e Useful for moderate compression
o Float32 — int8 or int4 (4x to 8x compression)

e Often used for quasi-lossless storage
e Fast and accurate

e Special case of PQ
o 1 dimension per component
o  Uniform “centroids”

e Be careful with imbalanced dimensions
o Eg. output of a PCA



Nesting of quantization methods

e Each quantizer has an assignment rule to a
centroid

e Only the full VQ (k-means) represents the
centroids explicitly

e Others have implicit centroids with more or Vector quantizer
less constraints / capacity

e Nested set of quantizers Additive quantizer

o  More general — slower, more accurate
o  More specific — faster, less accurate

e In practice: Scalar quantizer

o  (uniform) scalar quantization loses almost no
precision

o PQis a good tradeoff to reduce by < 4 bits per dim Binarization




Neural quantization methods



[Neural Discrete Representation Learning, Van den Oord et al, NIPS’17]

Vector Quantised-Variational AutoEncoder

e Auto-encoder with a discrete bottleneck
e Applied to the image domain initially

€, 6,8, - ) ?K
Embedding
Space
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e At encoding time: nearest centroid assignment



VQ-VAE training

e Loss

o Uses stop-gradients (sg)
o To keep some components fixed

= log p(x|z4(x)) + ||sg[ze(x)] — ell5 + Bllze(z) — sgle]|3,

T \

Data term embeddings — codebook codebook — embeddings

During forward computation the nearest embedding z,(x) (equation 2) is passed to the decoder, and
during the backwards pass the gradient V , L is passed unaltered to the encoder. Since the output



VQ-VAE results

e Impactful in the image (and other media) domain

Figure 2: Left: ImageNet 128x128x3 images, right: reconstructions from a VQ-VAE with a 32x32x1
latent space, with K=512.

e In the vector domain, limited impact

o  Not competitive with multi-codebook quantizers
o Hard to take advantage of an encoder in a space that is already vectorial



[Spreading vectors for similarity search, Sablayrolles et al, ICLR19]
The catalyzer

e Transform input vectors to make them easier to index
e Map with trained function
o Conserves neighborhood relations

e Fixed quantizer
o We have good quantizers for uniform data
o Centroids = intersection of the integer grid with a sphere

catalyzer discretization

-
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The catalyzer

e Loss that enforces a uniform output distribution
Lmodel — Lrank . )‘LKoLeoa

A=0.01 A=0.1 A — 00

input

e Local loss based on local entropy estimator (Kozachenko-Leononenko)
o Based on the log of the distance to the nearest neighbor

1 n
Loeo:__ ] n,1
KoL nzog(P,)

=1



The catalyzer: lattice quantizer 2

e Number of centroids as a function of
radius in 24 dim
e Assignment is tricky...

number of sphere vectors
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[Morozov & Babenko Unsupervised Neural Quantization for Compressed-Domain
Similarity Search, ICCV’'19]

Unsupervised Neural Quantization

Inspired by additive quantizers

Use a neural net to map to M codebooks
o Total outputdimd* M

; Batch -
X {Llnear} [NormJ {ReLU

Vector from Encoder net(x)
database

Encode each dimension separately” @ O cosenoors

Reconstruct with
o Additive quantizer
o Decoder network

Enforce that intermediate additive quantizer gives relatively good neighbors

; Batch - N7
{_meal} {Norm} [ReLU} X

Decoder g(f(x)) Reconstructed
vector




UNQ training

e Loss

M
1
L:L1+a-L2+ﬁ-MZCV2(z’m)
m=1

S

MSE loss triplet loss avoid code collapse

e 2-level search:
o Search with intermediate representation first: additive, fast
o Re-rank shortlist with full decoding



Polysemous codes



[Douze et al, Polysemous codes, ECCV’16]

Several decoders

Family of methods where codes can be decoded in two ways

o Fast/inaccurate
o Slow / accurate

Polysemous codes paper:
o Fast: binary search
o Slow: product quantization
o Speed factor 6

UNQ:
o Fast: additive quantizer
o  Slow: full decoding
o Speed factor 8.5

At search time
o  Shortlist with fast codes
o Rerank with slow codes (100-1000)

search time in SIFT1M (ms/core/query)
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[Amara et al, Nearest neighbor search with compact codes: A decoder perspective, ICMR’22]

Arbitrary decoders

e Given an encoder
o Generate codes for a training set

e Fit an arbitrarily large decoder
e Higher-level multi-codebook quantizer
o cf. the least-squares decoder

e Neural net

o easy to train
o no discretization, strong supervision

A

search time (ms/core/query)
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Figure 4: Accuracy vs. search time on the BigANNI1M dataset
when re-ranking: The NN decoder re-orders the top PQ results.

3.751
L 3.50
£
£ 3.251
S 3.001
3]
5 2.751
} .
1%
@ 2501
o
9__’ 2.25'
2.001

PQ e 16x4
* 8x8
PQ+AQ FQ
o4
PQ+NN
+ PQ+AQ
“PQ+NN LSQ++
0.lls 1's 165 1dOs

encoding time



Practical implementation: IVFPQ



[Jégou & al, Product quantization for nearest neighbor search, PANI'11]

Multiple quantization levels

e Coarse quantizer + residual quantizer
oreproduction value:
Yy~ qc(y) + e (y — ¢c(y))

Inverted file structure

e coarse = k-means quantizer, fine = product quantizer......"" =

oinverted file structure — g i 1|| £| |
o ?_E-IIIIT—Y/
e At search time: select subset of centroids i; o)
owithin inverted list: normal PQ search
with look-up tables argmin,||z — ge(yi) — (¥ — g (¥i)) |l

query PQ codes



[Johnson & al, , PAMI'11]

At the basis of many implementations

e Faiss IndexIVFPQ

e SCANN

e ANNS search over the coarse quantizer centroids
o  ANNS improvements benefit the search

e Relatively easy to optimize in hardware

o GPU
o SIMD



At the basis of many implementations

e Faiss IndexIVFPQ

e SCANN

e ANNS search over the coarse quantizer centroids
o  ANNS improvements benefit the search

e Relatively easy to optimize in hardware

o GPU
o SIMD

A



["Quicker ADC : Unlocking the Hidden Potential of Product Quantization with SIMD",
André et al, PAMI'19]

SIMD implementation of search

e PQ search bottleneck: memory look-ups
e Store look-up tables in registers

quantizer m quantizer m + 1
address (bytes) | 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
bits 0..3 0O 81 9 210 311 412 513 614 715 0 8 1 9 210 3 11 412 513 6 14 7 15
bits 4..7 16 24 17 25 18 26 19 27 20 28 21 29 22 30 23 31(16 24 17 25 18 26 19 27 20 28 21 29 22 30 23 31

e Requires very small codebooks: log(K) = 4 bits

e Fast/inaccurate
o Useful to do re-ranking



[Billion-scale similarity search with GPUs. Johnson et al, Trans big data, 2021]

GPU search

e Particularly efficient for

brute force search
e Fast arithmetic
e High mem bandwidth
e BUT high latencies

o Hard to implement
branching algorithms

32-byte codes, dataset size 10M
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Conclusion

e \ector compression is required for large scale

e Always keep an eye on traeoffs
o There are always a few “active” constraints

e Next class By Harsha on graph indexes
o Very efficient and versatile
o Use lots of memory — compression is useful!



END



