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Tradeoffs of vector search



Accuracy
(% of actual nearest neighbors 

found at rank 1)

Memory (RAM)
(bytes  per vector) Search speed 

(ms per vector)

Exhaustive 
Search

Compression
Pruning

3-handed tradeoff 



In this class 

● Mainly about the “compression” hand
● Fix size of representation

○ Because RAM is constrained 
● Operating points between the two other hands 

● Examples from Faiss 
○ Implements many index types 
○ Explore boundaries 

Next page: Faiss wiki 
https://github.com/facebookresearch/faiss/wiki/Indexing-1G-vectors



Speed: 
Queries per 
second 
(Log scale)

Accuracy: 
1-recall@1

Each curve 
= one type 
of index

Memory budget: max 
32 bytes per vector 



Presented in conjunction with a Python notebook 

● This sign: 

● Means there is related content in the notebook.



Vector quantization



Vector quantization: definition

● Quantization: map a vector to an 
integer 

○ Input is (supposed to be) continuous
○ Output is discrete 

● Integer ≡ bit array of fixed size ≡ code
● Reconstruction: inverse map

○ We recover only an approximation 
○ The reconstruction is lossy 

● Evaluation: Mean Squared Error
○ Because it has nice arithmetic properties…
○ Invariant with d-dim rotation   



Codes and relationship with clustering

● Numbering is sequential 
○ Otherwise do a mapping in the discrete domain 

● Size of codes 

● Quantization cell 
○ Locus of vectors that produce the same code 

● All quantization cells are a partition of input space 
● From a discrete point of view: clustering 

○ Reconstruction values are called “centroids” 



Lloyd’s optimality conditions (reminder)

● To minimize the MSE for discrete sets 
● 1: a vector should be assigned to the nearest reconstruction 

○ Otherwise re-assign that vector: decrease MSE!
● 2: each centroid should be the center of mass of points assigned to it

○ Otherwise just move the center of mass: decrease MSE! 
● Necessary, not sufficient   

● The k-means algorithm 
○ Iterate the two optimality conditions



Cases where the optimal 
centroids are known

● Uniform distribution 
○ A_x Lattice 

● Uniform over a sphere
○ Integer lattice on sphere 

● Unknown for Gaussian data

 
[Paulevé et al, Locality sensitive hashing: a comparison of hash
function types and querying mechanisms, Pattern recog letters 
2010]

[Sablayrolles et al, spreading vectors for similarity search, ICLR’19]



How optimal is k-means?



Optimality of k-means: practical considerations

● On small scale, 
practical k-means is 
quite off from the 
global optimum

● On large scale we 
don’t know!

○ NP-hard is very hard

[Augmented k-means, Touvron, Douze, Jégou, unpublished]



Difference between training and validation

● MSE can be computed on 
○ Training vectors → Lloyd’s conditions 
○ Validation → how it’s going to be used 

in reality 
● Small and large-data regime 
● Relevant parameter is n/k

○ Nb training points per centroid

Overfitting                               train-val convergence



Optimality of k-means: practical considerations

● As a function of the Points Per Centroid (ppc)
● Validation MSE 
● Line thickness: min and max of 10 k-means runs 

● It does not matter to have many initializations when k increases



Making good use of FLOPS

● Training a 100-centroid k-means on 1M vectors
○ Waste of resources? 

● Given a certain computational budget
○ Balance nb of iterations and 

nb points per centroid



Scaling k-means



Scaling k-means 

● Complexity 
● Required to get larger codes 

○ 3 bytes = 24 bits = 16M centroids 
○ Not a very large code… 
○ But a HUGE number of centroids 

● Expensive stage is assignment 
○ NNS problem 

● Brute-force hardware scaling 
○ CPU training 
○ GPU training 
○ Distributed training… 



Hierarchical k-means 
● Inspired by bisection in 1D
● Run k-means recursively to subdivide

○ Iterate
● Often used for search

○ Basis of the FLANN library
● But sub-optimal in terms of MSE 

○ See notebook 

[Nistér Stewenius, Scalable recognition with a vocabulary tree, CVPR’06]
[Muja, Lowe, Scalable Nearest Neighbor Algorithms
for High Dimensional Data, PAMI’14]



Vector quantization for search: 
The inverted file



● Cluster the space into k clusters of vectors
○ assign vectors to nearest centroid
○ Aka. “coarse quantizer”

● index = inverted list structure
○ maps centroid id → list of vectors assigned 

to it
● search procedure:
○ 1. find np << k nearest centroids to query 

vector
○ 2. scan the lists corresponding to the np 

centroids
● Objective: reduce the number of distance 

computations!

The Inverted File 



The Inverted File: number of centroids 

● Tradeoffs 
○ For high-accuracy regime it is not necessary to be very 

selective: small nb clusters 
○ For low-accuracy regime it is better to filter more with 

clusters 

● As a function of database size:  
○ Coarse quantization: k distance computations
○ Scanning: (assuming balanced clusters): 

nprobe * n / k 
○ Exercise: find optimal k as a function of n for fixed nprobe



Comparing coarse quantizers 

● Useful with 2 levels 
○ Reduces complexity 



Vector quantization for compression



Collection:
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Index 

Result:

Compression and search: asymmetric case

quantization



●Consider asymmetric setting
○ no constraint on storage of query
○ keep full query vector, encode 

database vectors

●Distance estimator
○reproduction value of the quantizer: centroid 
○approximate distance

○approximate nearest neighbor

Symmetric vs. asymmetric comparison



Distance computations with look-up tables 

● For a given query x, there are k possible distances 
○ Precompute a table!
○ At search time, look up the distances in the table. 
○ No computations at search time, only look-ups
○ Useful if nb centroids << nb database elements

● However, this is pretty limited
○ Small codes – limited recall…



Multi-codebook quantization



Multiple-codebook quantization

● Combine multiple quantizers 
○ Each has its codebook
○ Separate codes, total size

●  In the following: 
○ Product quantization
○ Additive quantization



Product Quantization

8 bits

16 components

⇒ 64 bit index

y1 y2 y3 y4 y5 y6 y7 y8

q1 q2 q3 q4 q5 q6 q7 q8

q1(y1) q2(y2) q3(y3) q4(y4) q5(y5) q6(y6) q7(y7) q8(y8)

256
centrpods

[Jégou & al, Product quantization for nearest neighbor search, PAMI'11]



●reconstruction value: concatenation of centroids

●distance computation:  distance is additive

●precompute M look-up tables!

Multiple-codebook quantization



Sizes & flops

no compression vector quantizer product quantizer

code size d log2(k) m*log2(k)
quantization cost N/A k*d k*d

distance 
computation cost

d multiply-adds one look-up, one add m look-ups, m adds

number of distinct 
values

N/A k k^m



Product Quantizer tradeoffs 

● For a given code size 
○ Code_size = M * log2(k)

● Higher k (and lower M)
○ Better accuracy 
○ Larger quantization tables (slower)

● When k → k^2 and M → M/2 
○ The “small” PQ can be expressed in 

the “large” PQ 
● Extremes: 

○ M=1 → full k-means 
○ k=1 → binary encoding

[Jégou & al, Product quantization for nearest neighbor search, PAMI'11]



Optimized product quantization

● Basic PQ splits the vectors into arbitrary 
subvectors

○ Accuracy is dependent on how well the subvectors are 
decorrelated  

○ Worst case: the vector actually repeats M times the 
same sub-vector! 
→ then it becomes equivalent to a single k-means

● OPQ trains a rotation matrix to optimally 
decorrelate them 

○ Iterative optimization

[Ge & al, Optimized Product Quantization, PAMI'13]



Additive quantization



Residual quantization

● Simple principle: 
○ Sequential encoding of residuals

● Does not work too well by default 
○ Due to greedy search
○ Extend with beam search 

●

[Chen et al, Approximate Nearest Neighbor Search by Residual Vector Quantization, sensors’10]
[Liu Shicong & al, Improved Residual Vector Quantization for High-dimensional Approximate Nearest 

Neighbor Search, AAAI'15]



Additive quantization

● Use multiple codebooks 
○ But in full dimension d

● More capacity 
○ PQ is a special case of AQ (where 

subspaces are set to 0)
● Encoding is not easy 

○ No independent optimization per 
sub-vector… 

○ Complexity of exact solution grows 
exponentially with M 

● They propose: 
○ Build the code sequentially by picking the 

element in the remaining codebooks that 
most reduces the residual

○ Also use a beam search

[Babenko & Lempitsky,Additive quantization for extreme vector compression, CVPR’14]



Local search quantization 
● Start from an initial (OPQ…)
● Encoding with simulated annealing

○ Change one code, compute loss
○ Accept the new code with some probability
○ Decreasing probability of accepting sub-optimal solution over iterations

● At training time: iterate
○ Encoding training set using current codebook 
○ Estimate codebook from codes and vectors → LS problem 

["LSQ++: Lower running time and higher recall in multi-codebook quantization", 
Martinez, et al. ECCV 2018.]

Training vectors (d*n)          Codebooks (d * (KM))         codes  (KM * n, sparse)             



Fast search with additive quantization
● With the decomposition

● We can pre-compute 

● Which allows to compute the dot product (fast!) 

● But not L2 distances… 
○ However, we can use 

Constant                     stored (approx)              computed with LUTs



Scalar quantization

● Uniform scalar quantization
○ Map each dimension to an int8 (or int4…)

● Useful for moderate compression
○ Float32 → int8 or int4 (4x to 8x compression)

● Often used for quasi-lossless storage 
● Fast and accurate
● Special case of PQ 

○ 1 dimension per component
○ Uniform “centroids”

● Be careful with imbalanced dimensions 
○ Eg. output of a PCA 



Nesting of quantization methods

● Each quantizer has an assignment rule to a 
centroid

● Only the full VQ (k-means) represents the 
centroids explicitly

● Others have implicit centroids with more or 
less constraints / capacity 

● Nested set of quantizers
○ More general – slower, more accurate 
○ More specific – faster, less accurate

● In practice:
○ (uniform) scalar quantization loses almost no 

precision
○ PQ is a good tradeoff to reduce by < 4 bits per dim

Additive quantizer

Product quantizer

Scalar quantizer

Binarization

Vector quantizer



Neural quantization methods



Vector Quantised-Variational AutoEncoder

● Auto-encoder with a discrete bottleneck
● Applied to the image domain initially

● At encoding time: nearest centroid assignment  

[Neural Discrete Representation Learning, Van den Oord et al, NIPS’17]



VQ-VAE  training 

● Loss 
○ Uses stop-gradients (sg) 
○ To keep some components fixed

Data term                   embeddings → codebook             codebook → embeddings 



VQ-VAE results  

● Impactful in the image (and other media) domain

● In the vector domain, limited impact 
○ Not competitive with multi-codebook quantizers 
○ Hard to take advantage of an encoder in a space that is already vectorial 



The catalyzer 

● Transform input vectors to make them easier to index 
● Map with trained function

○ Conserves neighborhood relations 
● Fixed quantizer 

○ We have good quantizers for uniform data
○ Centroids = intersection of the integer grid with a sphere

[Spreading vectors for similarity search, Sablayrolles et al, ICLR’19]



● Loss that enforces a uniform output distribution

● Local loss based on local entropy estimator (Kozachenko-Leononenko)
○ Based on the log of the distance to the nearest neighbor 

The catalyzer 



The catalyzer: lattice quantizer 

● Number of centroids as a function of 
radius in 24 dim

● Assignment is tricky… 

● Good perf
w.r.t. PQ



Unsupervised Neural Quantization
● Inspired by additive quantizers 
● Use a neural net to map to M codebooks 

○ Total output dim d * M 

● Encode each dimension separately 
● Reconstruct with

○ Additive quantizer 
○ Decoder network

● Enforce that intermediate additive quantizer gives relatively good neighbors

[Morozov & Babenko Unsupervised Neural Quantization for Compressed-Domain 
Similarity Search, ICCV’19]



UNQ training 

● Loss 

● 2-level search: 
○ Search with intermediate representation first: additive, fast 
○ Re-rank shortlist with full decoding

MSE loss                    triplet loss              avoid code collapse 



Polysemous codes 



Several decoders  

● Family of methods where codes can be decoded in two ways 
○ Fast / inaccurate
○ Slow / accurate 

● Polysemous codes paper:
○ Fast: binary search 
○ Slow: product quantization 
○ Speed factor 6

● UNQ: 
○ Fast: additive quantizer 
○ Slow: full decoding 
○ Speed factor 8.5

● At search time
○ Shortlist with fast codes 
○ Rerank with slow codes (100-1000)

[Douze et al, Polysemous codes, ECCV’16]



Arbitrary decoders  

● Given an encoder 
○ Generate codes for a training set 

● Fit an arbitrarily large decoder 
● Higher-level multi-codebook quantizer 

○ cf. the least-squares decoder
● Neural net 

○ easy to train
○ no discretization, strong supervision

[Amara et al, Nearest neighbor search with compact codes: A decoder perspective, ICMR’22]



Practical implementation: IVFPQ 



● Coarse quantizer + residual quantizer
○reproduction value:

●  coarse = k-means quantizer, fine = product quantizer
○inverted file structure

● At search time: select subset of centroids
○within inverted list: normal PQ search 

with look-up tables 

Multiple quantization levels

query PQ codes

[Jégou & al, Product quantization for nearest neighbor search, PAMI'11]



At the basis of many implementations 

● Faiss IndexIVFPQ 
● SCANN 
● ANNS search over the coarse quantizer centroids

○ ANNS improvements benefit the search 
● Relatively easy to optimize in hardware

○ GPU 
○ SIMD 

[Johnson & al, , PAMI'11]



At the basis of many implementations 

● Faiss IndexIVFPQ 
● SCANN 
● ANNS search over the coarse quantizer centroids

○ ANNS improvements benefit the search 
● Relatively easy to optimize in hardware

○ GPU 
○ SIMD 



SIMD implementation of search 
● PQ search bottleneck: memory look-ups
● Store look-up tables in registers 

● Requires very small codebooks: log(K) = 4 bits 
● Fast / inaccurate 

○ Useful to do re-ranking 

["Quicker ADC : Unlocking the Hidden Potential of Product Quantization with SIMD", 
André et al, PAMI'19]



GPU search 

[Billion-scale similarity search with GPUs. Johnson et al, Trans big data, 2021]

● Particularly efficient for 
brute force search

● Fast arithmetic
● High mem bandwidth 
● BUT high latencies 

○ Hard to implement 
branching algorithms 



Conclusion

● Vector compression is required for large scale 
● Always keep an eye on traeoffs 

○ There are always a few “active” constraints 

● Next class By Harsha on graph indexes 
○ Very efficient and versatile 
○ Use lots of memory → compression is useful! 



END


