
Long Term Memory in AI - Vector Search and Databases COS 597A Fall 2023

Class 5 - Dimensionality Reduction
Lectures: Lectures: Edo Liberty and Matthijs Douze

Warning: Please do not cite this note as a peer reviewed source. Please submit requests and corrections as issues or

pull requests at github.com/edoliberty/vector-search-class-notes

1 Singular Value Decomposition (SVD)

We will see that any matrix A ∈ Rm×n (w.l.o.g. m ≤ n) can be written as

A =

m∑
`=1

σ`u`v
T
` (1)

∀ ` σ` ∈ R, σ` ≥ 0 (2)

∀ `, `′ 〈u`, u`′〉 = 〈v`, v`′〉 = δ(`, `′) (3)

To prove this consider the matrix AAT ∈ Rm×m. Set u` to be the `’th eigenvector of AAT . By definition
we have that AATu` = λ`u`. Since AAT is positive semidefinite we have λ` ≥ 0. Since AAT is symmetric
we have that ∀ `, `′ 〈u`, u`′〉 = δ(`, `′). Set σ` =

√
λ` and v` = 1

σ`
ATu`. Now we can compute the following:

〈v`, v`′〉 =
1

σ2
`

uT` AA
Tu`′ =

1

σ2
`

λ`〈u`, u`′〉 = δ(`, `′)

We are only left to show that A =
∑m
`=1 σ`u`v

T
` . To do that consider the test vector w =

∑m
i=1 αiui.

wTA =

m∑
i=1

αiu
T
i A =

m∑
i=1

αiσiv
T
i =

m∑
i=1

m∑
j=1

αiσj(u
T
i uj)v

T
j = (

m∑
i=1

αiu
T
i)(

m∑
j=1

σjujv
T
j) = wT (

m∑
j=1

σjujv
T
j)

The vectors u` and v` are called the left and right singular vectors of A and σ` are the singular vectors of A.
It is customary to order the singular values in descending order σ1 ≥ σ2, . . . , σm ≥ 0. Also, we will denote
by r the rank of A. Here is another very convenient way to write the fact that A =

∑m
`=1 σ`u`v

T
`

• Let Σ ∈ Rr×r be a diagonal matrix whose entries are Σ(i, i) = σi and σ1 ≥ σ2 ≥ . . . ≥ σr.

• Let U ∈ Rm×r be the matrix whose i’th column is the left singular vectors of A corresponding to
singular value σi.

• Let V ∈ Rn×r be the matrix whose i’th column is the right singular vectors of A corresponding to
singular value σi.

We have that A = USV T and that UTU = V TV = Ir. Note that the sum goes only up to r which is the
rank of A. Clearly, not summing up zero valued singular values does not change the sum.

Applications of the SVD

1. Determining range, null space and rank (also numerical rank).

1

2. Matrix approximation.

3. Inverse and Pseudo-inverse: If A = UΣV T and Σ is full rank, then A−1 = V Σ−1UT . If Σ is singular,
then its pseudo-inverse is given by A† = V Σ†UT , where Σ† is formed by replacing every nonzero entry
by its reciprocal.

4. Least squares: If we need to solve Ax = b in the least-squares sense, then xLS = V Σ†UT b.

5. De-noising – Small singular values typically correspond to noise. Take the matrix whose columns are
the signals, compute SVD, zero small singular values, and reconstruct.

6. Compression – We have signals as the columns of the matrix S, that is, the i signal is given by

Si =

r∑
i=1

(σjvij)uj .

If some of the σi are small, we can discard them with small error, thus obtaining a compressed repre-
sentation of each signal. We have to keep the coefficients σjvij for each signal and the dictionary, that
is, the vectors ui that correspond to the retained coefficients.

SVD and eigen-decomposition are related but there are quite a few differences between them.

1. Not every matrix has an eigen-decomposition (not even any square matrix). Any matrix (even rectan-
gular) has an SVD.

2. In eigen-decomposition A = XΛX−1, that is, the eigen-basis is not always orthogonal. The basis of
singular vectors is always orthogonal.

3. In SVD we have two singular-spaces (right and left).

4. Computing the SVD of a matrix is more numerically stable.

Rank-k approximation in the spectral norm

The following will claim that the best approximation to A by a rank deficient matrix is obtained by the top
singular values and vectors of A. More accurately:

Fact 1.1. Set

Ak =

k∑
j=1

σjujv
T
j .

Then,
min

B∈Rm×n
rank(B)≤k

‖A−B‖2 = ‖A−Ak‖2 = σk+1.

Proof.

‖A−Ak‖ = ‖
r∑
j=1

σjujv
T
j −

k∑
j=1

σjujv
T
j ‖ = ‖

r∑
j=k+1

σjujv
T
j ‖ = σk+1

and thus σk+1 is the largest singular value ofA−Ak. Alternatively, look at UTAkV = diag(σ1, . . . , σk, 0, . . . , 0),
which means that rank(Ak) = k, and that

‖A−Ak‖2 = ‖UT (A−Ak)V ‖2 = ‖ diag(0, . . . , 0, σk+1, . . . , σr)‖2 = σk+1.

Let B be an arbitrary matrix with rank(Bk) = k. Then, it has a null space of dimension n− k, that is,

null(B) = span(w1, . . . , wn−k).

2

A dimension argument shows that

span(w1, . . . , wn−k) ∩ span(v1, . . . , vk+1) 6= {0}.

Let w be a unit vector from the intersection. Since

Aw =

k+1∑
j=1

σj(v
T
j w)uj ,

we have

‖A−B‖22 ≥ ‖(A−B)w‖22 = ‖Aw‖22 =

k+1∑
j=1

σ2
j

∣∣vTj w∣∣2 ≥ σ2
k+1

k+1∑
j=1

∣∣vTj w∣∣2 = σ2
k+1,

since w ∈ span{v1, . . . , vn+1}, and the vj are orthogonal.

Rank-k approximation in the Frobenius norm

The same theorem holds with the Frobenius norm.

Theorem 1.1. Set

Ak =

k∑
j=1

σjujv
T
j .

Then,

min
B∈Rm×n

rank(B)≤k

‖A−B‖F = ‖A−Ak‖F =

√√√√ m∑
i=k+1

σ2
i .

Proof. Suppose A = UΣV T . Then

min
rank(B)≤k

‖A−B‖2F = min
rank(B)≤k

‖UΣV T − UUTBV V T ‖2F = min
rank(B)≤k

‖Σ− UTBV ‖2F .

Now,

‖Σ− UTBV ‖2F =

n∑
i=1

(
Σii −

(
UTBV)ii

))2
+ off-diagonal terms.

If B is the best approximation matrix and UTBV is not diagonal, then write UTBV = D + O, where D is
diagonal and O contains the off-diagonal elements. Then the matrix B = UDV T is a better approximation,
which is a contradiction.

Thus, UTBV must be diagonal. Hence,

‖Σ−D‖2F =

n∑
i=1

(σi − di)2
=

k∑
i=1

(σi − di)2
+

n∑
i=k+1

σ2
i ,

and this is minimal when di = σi, i = 1, . . . , k. The best approximating matrix is Ak = UDV T , and the

approximation error is
√∑n

i=k+1 σ
2
i .

3

2 Linear regression in the least-squared loss

In Linear regression we aim to find the best linear approximation to a set of observed data. For the m data
points {x1, . . . , xm}, xi ∈ Rn, each receiving the value yi, we look for the weight vector w that minimizes:

n∑
i=1

(xTi w − yi)2 = ‖Aw − y‖22

Where A is a matrix that holds the data points as rows Ai = xTi .

Proposition 2.1. The vector w that minimizes ‖Aw − y‖22 is w = A†y = V Σ†UT y for A = UΣV T and

Σ†ii = 1/Σii if Σii > 0 and 0 else.

Let us define U‖ and U⊥ as the parts of U corresponding to positive and zero singular values of A
respectively. Also let y‖ = 0 and y⊥ be two vectors such that y = y‖ + y⊥ and U‖y⊥ = 0 and U⊥y‖ = 0.

Since y‖ and y⊥ are orthogonal we have that ‖Aw−y‖22 = ‖Aw−y‖−y⊥‖22 = ‖Aw−y‖‖22 +‖y⊥‖22. Now,

since y‖ is in the range of A there is a solution w for which ‖Aw − y‖‖22 = 0. Namely, w = A†y = V Σ†UT y

for A = UΣV T . This is because UΣV TV Σ†UT y = y‖. Moreover, we get that the minimal cost is exactly
‖y⊥‖22 which is independent of w.

3 PCA, Optimal squared loss dimension reduction

Given a set of n vectors x1, . . . , xn in Rm. We look for a rank k projection matrix P ∈ Rm×m that minimizes:∑
i=1

||Pxi − xi||22

If we denote by A the matrix whose i’th column is xi then this is equivalent to minimizing ||PA−A||2F Since

the best possible rank k approximation to the matrix A is Ak =
∑k
i=1 σiuiv

T
i the best possible solution would

be a projection P for which PA = Ak. This is achieved by P = UkU
T
k where Uk is the matrix corresponding

to the first k left singular vectors of A.
If we define yi = UTk xi we see that the values of yi ∈ Rk are optimally fitted to the set of points xi in

the sense that they minimize:

min
y1,...,yn

min
Ψ∈Rk×m

∑
i=1

||Ψyi − xi||22

The mapping of xi → UTk xi = yi thus reduces the dimension of any set of points x1, . . . , xn in Rm to a set
of points y1, . . . , yn in Rk optimally in the squared loss sense. This is commonly referred to as Principal
Component Analysis (PCA).

4

4 Closest orthogonal matrix

The SVD also allows to find the orthogonal matrix that is closest to a given matrix. Again, suppose that
A = UΣV T and W is an orthogonal matrix that minimizes ‖A−W‖2F among all orthogonal matrices. Now,

‖UΣV T −W‖2F = ‖UΣV T − UUTWV V T ‖ = ‖Σ− W̃‖,

where W̃ = UTWV is another orthogonal matrix. We need to find the orthogonal matrix W̃ that is closest
to Σ. Alternatively, we need to minimize ‖W̃TΣ− I‖2F .

If U is orthogonal and D is diagonal and positive, then

trace(UD) =
∑
i,k

uikdki ≤
∑
i

(∑
k

u2
ik

)1/2(∑
k

d2
ik

)1/2


=
∑
i

(∑
k

d2
ki

)1/2

=
∑
i

(
d2
ii

)1/2
=
∑
i

dii = trace(D).

(4)

Now

‖W̃TΣ− I‖2F = trace

((
W̃TΣ− I

)(
W̃TΣ− I

)T)
= trace

((
W̃TΣ− I

)(
ΣW̃ − I

))
= trace

(
W̃TΣ2W̃

)
− trace

(
W̃TΣ

)
− trace

(
ΣW̃

)
+ n

= trace

((
ΣW̃

)T (
ΣW̃

))
− 2 trace

(
ΣW̃

)
+ n

= ‖ΣW̃‖2F − 2 trace
(

ΣW̃
)

+ n

= ‖Σ‖2F − 2 trace
(

ΣW̃
)

+ n.

Thus, we need to maximize trace
(

ΣW̃
)

. But this is maximized by W̃ = I by (4). Thus, the best approxi-

mating matrix is W = UV T .

5 Computing the SVD: The power method

We give a simple algorithm for computing the Singular Value Decomposition of a matrix A ∈ Rm×n. We
start by computing the first singular value σ1 and left and right singular vectors u1 and v1 of A, for which
mini<j log(σi/σj) ≥ λ:

1. Generate x0 such that x0(i) ∼ N (0, 1).

2. s← log(4 log(2n/δ)/εδ)/2λ

3. for i in [1, . . . , s]:

4. xi ← ATAxi−1

5. v1 ← xi/‖xi‖

6. σ1 ← ‖Av1‖

7. u1 ← Av1/σ1

5

8. return (σ1, u1, v1)

Let us prove the correctness of this algorithm. First, write each vector xi as a linear combination of the right
singular values of A i.e. xi =

∑
j α

i
jvj . From the fact that vj are the eigenvectors of ATA corresponding to

eigenvalues σ2
j we get that αij = αi−1

j σ2
j . Thus, αsj = α0

jσ
2s
j . Looking at the ratio between the coefficients of

v1 and vi for xs we get that:

| < xs, v1 > |
| < xs, vi > |

=
|α0

1|
|α0
i |

(
σ1

σi

)2s

Demanding that the error in the estimation of σ1 is less than ε gives the requirement on s.

|α0
1|
|α0
i |

(
σ1

σi

)2s

≥ n

ε
(5)

s ≥ log(n|α0
i |/ε|α0|1)

2 log(σ1/σi)
(6)

From the two-stability of the Gaussian distribution we have that α0
i ∼ N (0, 1). Therefore, Pr[α0

i > t] ≤ e−t2

which gives that with probability at least 1−δ/2 we have for all i, |α0
i | ≤

√
log(2n/δ). Also, Pr[|α0

1| ≤ δ/4] ≤
δ/2 (this is because Pr[|z| < t] ≤ maxrΨz(r) ·2t for any distribution and the normal distribution function at
zero takes it maximal value which is less than 2) Thus, with probability at least 1− δ we have that for all i,
|α0

1|
|α0
i |
≤
√

log(2n/δ)

δ/4 . Combining all of the above we get that it is sufficient to set s = log(4n log(2n/δ)/εδ)/2λ =

O(log(n/εδ)/λ) in order to get ε precision with probability at least 1− δ.
We now describe how to extend this to a full SVD of A. Since we have computed (σ1, u1, v1), we can

repeat this procedure for A − σ1u1v
T
1 =

∑n
i=2 σiuiv

T
i . The top singular value and vectors of which are

(σ2, u2, v2). Thus, computing the rank-k approximation of A requires O(mnks) = O(mnk log(n/εδ))/λ)
operations. This is because computing ATAx requires O(mn) operations and for each of the first k singular
values and vectors this is performed s times.

The main problem with this algorithm is that its running time is heavily influenced by the value of
λ. This is, in fact, an artifact of the analysis rather than the algorithm. Next, we see a gap independent
analysis.

6 Gap independent analysis

We show a short proof from [7] of a spectral gap independent property of simultaneous iterations. This
follows the similar analyses [10, 4, 8, 12].

Lemma 6.1. Let A ∈ Rn×m be an arbitrary matrix and let G ∈ Rm×k be a matrix of i.i.d. random Gaussian
entries. Let t = c · log(n/ε)/ε and Z = span((AAT)tAG) then

||A− ZZTA|| ≤ (1 + ε)σk+1

with high probability depending only on the universal constant c.

Proof. ||A − ZZTA|| = maxx:‖x‖=1 ‖xTA‖ such that ‖xTZ‖ = 0. We change variables A = USV T and
x = Uy and G′ = V TG. Note that G′ is also a matrix of i.id. Gaussian entries because V is orthogonal.
This reduces to maxy:‖y‖=1 ‖yTS‖ such that yTS2t+1G′ = 0. We now break y, S, and G′ to two blocks each
such that

y =

(
y1

y2

)
, S =

(
S1 0
0 S2

)
, G′ =

(
G′1
G′2

)

6

and y1 ∈ Rk, y2 ∈ Rn−k, S1 ∈ Rk×k, S2 ∈ R(n−k)×(n−k), G′1 ∈ Rk×k, and G′2 ∈ R(n−k)×k.

0 = ‖yTS2t+1G′‖ = ‖yT1 S2t+1
1 G′1 + yT2 S

2t+1
2 G′2‖

≥ ‖yT1 S2t+1
1 G′1‖ − ‖yT2 S2t+1

2 G′2‖
≥ ‖yT1 S2t+1

1 ‖/‖G′−1
1 ‖ − ‖yT2 ‖ · ‖S

2t+1
2 ‖ · ‖G′2‖

≥ |y1(i)|σ2t+1
i /‖G′−1

1 ‖ − σ
2t+1
k+1 · ‖G

′
2‖ .

This gives that |y1(i)| ≤ (σk+1/σi)
2t+1‖G′2‖‖G′−1

1 ‖. Equipped with this inequality we bound the expression
‖yTS‖. Let k′ ≤ k be such that σk′ ≥ (1 + ε)σk+1 and σk′+1 < (1 + ε)σk+1.

||A− ZZTA||2 = ‖yTS‖2 =

k′∑
i=1

y2
i σ

2
i +

n∑
i=k′+1

y2
i σ

2
i (7)

≤

‖G′2‖2‖G′−1
1 ‖2

k′∑
i=1

(σk+1/σi)
4tσ2

k+1

+ (1 + ε)σ2
k+1 (8)

≤
[
‖G′2‖2‖G′−1

1 ‖2k(1/(1 + ε))4t + (1 + ε)
]
σ2
k+1 ≤ (1 + 2ε)σ2

k+1 (9)

The last step is correct as long as ‖G′2‖2‖G′−1
1 ‖2k(1/(1+ε))4t ≤ εσ2

k+1 which holds for t ≥ log(‖G′2‖2‖G′−1
1 ‖2k/ε)/4 log(1+

ε) = O(log(n/ε)/ε). The last inequality uses the fact that G′1 and G′2 are random gaussian due to rotational
invariance of the Gaussian distribution. This means that ‖G′2‖2‖G′−1

1 ‖2 = O(poly(n)) with high probability
[11]. Finally, ||A− ZZTA|| ≤

√
1 + 2ε · σk+1 ≤ (1 + ε)σk+1.

7 Random-projection

We will give a simple proof of the following, rather amazing, fact. Every set of n points in a Euclidian space
(say in dimension d) can be embedded into the Euclidean space of dimension k = O(log(n)/ε2) such that all
pairwise distances are preserved up distortion 1 ± ε. We will prove the construction of [3] which is simpler
than the one in [5].

We will argue that a certain distribution over the choice of a matrix R ∈ Rk×d gives that:

∀x ∈ Sd−1 Pr

[∣∣∣∣|| 1√
k
Rx|| − 1

∣∣∣∣ > ε

]
≤ 1

n2
(10)

Before we pick this distribution and show that Equation 10 holds for it, let us first see that this gives the
opening statement.

Consider a set of n points x1, . . . , xn in Euclidean space Rd. Embedding these points into a lower
dimension while preserving all distances between them up to distortion 1±ε means approximately preserving
the norms of all

(
n
2

)
vectors xi − xj . Assuming Equation 10 holds and using the union bound, this property

will fail to hold for at least one xi − xj pair with probability at most
(
n
2

)
1
n2 ≤ 1/2. Which means that all(

n
2

)
point distances are preserved up to distortion ε with probability at least 1/2.

8 Matrices with normally distributed independent entries

We consider the distribution of matrices R such that each R(i, j) is drawn independently from a normal
distribution with mean zero and variance 1, R(i, j) ∼ N (0, 1). We show that for this distribution Equation 10
holds for some k ∈ O(log(n)/ε2).

First consider the random variable z =
∑d
j=1 r(j)x(j) where r(j) ∼ N (0, 1). To understand how the

variable z distributes we recall the two-stability of the normal distribution. Namely, if z3 = z2 + z1 and
z1 ∼ N (µ1, σ1) and z2 ∼ N (µ2, σ2) then,

z3 ∼ N (µ1 + µ2,
√
σ2

1 + σ2
2).

7

In our case, r(i)x(i) ∼ N (0, xi) and therefore, z =
∑d
i=1 r(i)x(i) ∼ N (0,

√∑d
i=1 x

2
i) ∼ N (0, 1). Now, note

that each element in the vector Rx distributes exactly like z. Defining k identical copies of z, z1, . . . , zk, We

get that || 1√
k
Rx|| distributes exactly like

√
1
k

∑k
i=1 z

2
i . Thus, proving Equation 10 reduces to showing that:

Pr

∣∣∣∣∣∣
√√√√1

k

k∑
i=1

z2
i − 1

∣∣∣∣∣∣ > ε

 ≤ 1

n2
(11)

for a set of independent normal random variables z1, . . . , zk ∼ N (0, 1). It is sufficient to demanding that

Pr[
∑k
i=1 z

2
i ≥ k(1 + ε)2] and Pr[

∑k
i=1 z

2
i ≤ k(1− ε)2] are both smaller than 1/2n2. We start with bounding

the probability that
∑k
i=1 z

2
i ≥ k(1 + ε) (this is okay because k(1 + ε) < k(1 + ε)2).

Pr[
∑

z2
i ≥ k(1 + ε)] = Pr[eλ

∑
z2i ≤ eλk(1+ε)] ≤ (E[eλz

2

])k/eλk(1+ε)

Since z ∼ N (0, 1) we can compute E[eλz
2

] exactly:

E[eλz
2

] =
1√
2π

∫ ∞
−∞

eλt
2

e−
t2

2 dt =
1√
2π

∫ ∞
−∞

e−
(t
√

1−2λ)2

2 dt =
1√

1− 2λ

The final step is by substituting t′ = t
√

1− 2λ and recalling that 1√
2π

∫∞
−∞ e−

t′2
2 dt′ = 1. Finally, using the

fact that 1√
1−2λ

≤ 2λ+ 4λ2 for λ ∈ [0, 1/4] we have:

E[eλz
2

] ≤ eλ+2λ2

Substituting this into the equation above we have that:

Pr ≤ ek(λ+2λ2)−kλ(1+ε) = e2kλ2−kλε = e−kε
2/8

for λ← ε/4. Finally, our condition that

Pr[

k∑
i=1

z2
i ≥ k(1 + ε)] ≤ e−kε

2/8 ≤ 1/2n2

is achieved by k = c log(n)/ε2. Calculating for Pr[
∑k
i=1 z

2
i ≤ k(1 − ε)] in the same manner shows that

k = c log(n)/ε2 is also sufficient for this case. This completes the proof.

9 Fast Random Projections

We discussed in class the fact that random projection matrices cannot be made sparse in general. That is
because projecting sparse vectors and preserving their norm requires the projecting matrix is almost fully
dense see also [9] and [6].

But, the question is, can we actively make sure that x is not sparse? If so, can we achieve a sparse
random projection for non sparse vectors? These two questions received a positive answer in the seminal
work by Ailon and Chazelle [1]. The results of [1] were improved and simplified over the years. See [2] for
the latest result and an overview.

In this lesson we will produce a very simple algorithm based on the ideas in [1]. This algorithm will
require a target dimension of O(log2(n)/ε2) instead of O(log(n)/ε2) but will be much simpler to prove.

8

9.1 Fast vector `4 norm reduction

The goal of this subsection is to devise a linear mapping which preserves vector’s `2 norms but reduces their
`4 norms with high probability. This will work to our advantage because, intuitively, vectors whose `4 norm
is small cannot be too sparse. For this we will need to learn what Hadamard matrices are.

Hadamard matrices are commonly used in coding theory and are conceptually close for Fourier matrices.
We assume for convenience that d is a power of 2 (otherwise we can pad out vectors with zeros). The Walsh
Hadamard transform of a vector x ∈ Rd is the result of the matrix-vector multiplication Hx where H is a
d × d matrix whose entries are H(i, j) = 1√

d
(−1)〈i,j〉. Here 〈i, j〉 means the dot product over F2 of the bit

representation of i and j as binary vectors of length log(d). Another way to view this is to define Hadamard
Matrices recursively.

H1 =
1√
2

(
1 1
1 −1

)
, Hd =

1√
2

(
Hd/2 Hd/2

Hd/2 −Hd/2

)
Here are a few interesting (and easy to show) facts about Hadamard matrices.

1. Hd is a unitary matrix ‖Hx‖ = ‖x‖ for any vector x ∈ Rd.

2. Computing x 7→ Hx requires O(d log(d)) operations.

We also define a diagonal matrix D to be such that D(i, i) ∈ {1,−1} uniformly. Clearly, we have
that ‖HDx‖2 = ‖x‖2 since both H and D are isotropies. Let us now bound ‖HDx‖∞. (HDx)(1) =∑d
i=1H(1, i)D(i, i)xi =

∑d
i=1

xi√
d
si where si ∈ {−1, 1} uniformly. To bound this we recap Hoeffding’s

inequality.

Fact 9.1 (Hoeffding’s inequality). Let X1, . . . , Xn be independent random variables s.t. Xi ∈ [ai, bi]. Let
X =

∑n
i=1Xi.

Pr[|X − E[X]| ≥ t] ≤ 2e
− 2t2∑n

i=1
(bi−ai)2 (12)

Invoking Hoeffding’s inequality and then the union bound we get that if ‖HDx‖∞ ≤
√

c log(n)
d for all

points x. Remark, for this we assumed log(d) = O(log(n)) otherwise we should have had log(nd) in the
bound. The situation, however, that the dimension is super polynomial in the number of points is unlikely.
Usually it is common to have n > d.

Lemma 9.1. Let x ∈ Rd by such that ‖x‖ = 1. Then:

‖HDx‖44 = O(log(n)/d)

with probability at least 1− 1/poly(n)

Proof. Let us define y = HDx and zi = y2
i . From the above we have that zi ≤ c log(n)

d = η with probability
at least 1− 1/poly(n). The quantity ‖HDx‖44 = ‖y‖44 =

∑
i z

2
i is a convex function of the z variables which

is defined over a polytop zi ∈ [0, 1] and
∑
i zi = 1 (this is because ‖y‖22 = 1). This means that its maximal

value is obtained on an extreme point of this polytope. In other words, the point z1, . . . , z1/η = η and
z1/η+1, . . . , zd = 0 or z = [η, η, . . . , η, η, 0, 0, 0, . . . , 0, 0, 0]. Computing the value of the function in this point

gives
∑
i z

2
i ≤ (1/η) · (η2) = η. Recalling the η = c log(n)

d completes the proof.

9.2 Sampling from vectors with low `4 norms

Here we prove a very simple fact. For vectors whose `4 is low, dimensionality reduction can be obtained by
sampling.

Let y be a vector such that ‖y‖2 = 1. Let z be a sampled version of y such that zi = yi/
√
p with

probability p and 0 else. This is akin to sampling, in expectation, d · p coordinates from y (and scaling them
up by 1/

√
p). Note the E[‖z‖2] = E[‖y‖2] = 1 moreover:

Pr[|‖z‖2 − 1| > ε] = Pr[|
∑

z2
i − 1| > ε] = Pr[|

∑
biy

2
i /p− 1| > ε]

9

Where bi are independent random indicator variables taking the bi = 1 with probability p and bi = 0 else.
To apply Chernoff’s bound we must assert that y2

i /p ≤ 1. Let’s assume this for now and return to it later.
Applying Chernoff’s bound we get

Pr[|
∑

biy
2
i /p− 1| > ε] ≤ e−

cε2

σ2

where σ2 =
∑
i E[(biy

2
i /p)

2] = ‖y‖44/p. Concluding that

Pr[|‖z‖2 − 1| > ε] ≤ e
− cpε2

‖y‖44

This shows that the concentration of the sampling procedure really depends directly on the `4 norm of the
sampled vector. If we plug in the bound on ‖y‖44 = ‖HDx‖44 from the previous section we get

Pr[|‖z‖2 − 1| > ε] ≤ e−
cpεd
log(n) ≤ 1

poly(n)

For some p ∈ O(log2(n)/dε2).

9.3 Random Projection by Sampling

Putting it all together we obtain the following.

Lemma 9.2. Define the following matrices

• D: A diagonal matrix such that Di,i ∈ {+1,−1} uniformly.

• H: The d× d Walsh Hadamard Transform matrix.

• P : A ‘sampling matrix’ which contains each row of matrix Id ·
√
p with probability p = c log2(n)/dε2.

Then, with at least constant probability the following holds.

1. The target dimension of the mapping is k = c log2(n)/ε2 (a factor log(n) worse than optimal).

2. The mapping x 7→ PHDx is a (1± ε)-distortion mapping for any set of n points. That is, for any set
x1, . . . , xn ∈ Rd we have

‖xi − xj‖(1− ε) ≤ ‖PHDxi − PHDxj‖ ≤ ‖xi − xj‖(1 + ε)

3. Storing PHD requires at most O(d+ k log(d)) space.

4. Applying the mapping x 7→ PHDx requires at most d log(d) floating point operations.

References

[1] Nir Ailon and Bernard Chazelle. Approximate nearest neighbors and the fast johnson-lindenstrauss
transform. In Proceedings of the 38st Annual Symposium on the Theory of Compututing (STOC), pages
557–563, Seattle, WA, 2006.

[2] Nir Ailon and Edo Liberty. An almost optimal unrestricted fast johnson-lindenstrauss transform. In
SODA, pages 185–191, 2011.

[3] S. DasGupta and A. Gupta. An elementary proof of the johnson-lindenstrauss lemma. Technical Report,
UC Berkeley, 99-006, 1999.

10

[4] N. Halko, P. G. Martinsson, and J. A. Tropp. Finding structure with randomness: Probabilistic algo-
rithms for constructing approximate matrix decompositions. SIAM Rev., 53(2):217–288, May 2011.

[5] W. B. Johnson and J. Lindenstrauss. Extensions of lipschitz mappings into a hilbert space. Contempo-
rary Mathematics, 26:189–206, 1984.

[6] Daniel M. Kane and Jelani Nelson. Sparser johnson-lindenstrauss transforms. In SODA, pages 1195–
1206, 2012.

[7] Edo Liberty. A short proof for gap independence of simultaneous iteration, 2016.

[8] Cameron Musco and Christopher Musco. Randomized block krylov methods for stronger and faster
approximate singular value decomposition. In Advances in Neural Information Processing Systems 28:
Annual Conference on Neural Information Processing Systems 2015, December 7-12, 2015, Montreal,
Quebec, Canada, pages 1396–1404, 2015.

[9] Jelani Nelson and Huy L. Nguyen. Sparsity lower bounds for dimensionality reducing maps. In
arXiv:1211.0995v1, 2012.

[10] Vladimir Rokhlin, Arthur Szlam, and Mark Tygert. A randomized algorithm for principal component
analysis. SIAM J. Matrix Analysis Applications, 31(3):1100–1124, 2009.

[11] Mark Rudelson. Invertibility of random matrices: norm of the inverse. Annals of Mathematics, 168
Issue 2:575–600, 2008.

[12] Rafi Witten and Emmanuel Candès. Randomized algorithms for low-rank matrix factorizations: Sharp
performance bounds. Algorithmica, 72(1):264–281, May 2015.

11

