
Long Term Memory in AI - Vector Search and Databases COS 597A Fall 2023

Class 4 - Low Dimensional Vector Search
Lectures: Lectures: Edo Liberty and Matthijs Douze

Warning: Please do not cite this note as a peer reviewed source. Please submit requests and corrections as issues or

pull requests at github.com/edoliberty/vector-search-class-notes

1 Nearest Neighbor Search Definition

As we have seen, nearest neighbor search is a fundamental computational building block in computer vision,
semantic search, data mining, machine learning, and many other applications.

Definition 1.1. Nearest Neighbor Search: Given a set of points X = {x1, . . . , xn} ∈ Rd preprocess
them into a data structure of size poly(n, d) in time poly(n, d) such that nearest neighbor queries can be
performed. Given a search query point q a radius r and the data structure should return return Xq,r =
{i | ||q − xi|| ≤ r}.

We will later extend this definition in the obvious way to max-inner-product search (MIPS) and cosine
similarity search. Improving the practical and theoretical asymptotic time complexity for computing Xq,r is
the topic of this class.

One option we have is to do nothing at the preprocessing stage. Then, at query time, scan the data
points and find those which minimize ‖q − xi‖. This would give a query time of Ω(nd). But, of course, it
would be significantly better if we could reduce the dependence on n, or in other words, avoid scanning the
data for every query point.

2 kd-trees

First, we shall review a well known and widely used algorithm for this problem which is called kd-trees [1].
The data structure holds the points in a geometrically partitioned tree. Each subtree contains all the points
in an axis aligned bounding box, In each depth in the tree the bounding boxes are split along an axis. There
are many different heuristics for splitting the boxes. For didactic reasons, let’s consider a simple construction
that lends itself to easy analysis.

In our setting, we assume the number of points is exactly a power of 2 and that coordinate values are
distinct. Both assumptions are relatively harmless and should not change the asymptotic behavior.

1

We will organize the points in a perfectly balanced binary tree. Points will be associated only with leaves.
The construction of the tree is simple. We start with all points in a single box (a node in the tree) We split
the box in two along the first coordinate such that exactly half the points lie on each side. The splitting
offset is given by the median of these coordinates. Then, do the same for each of the two resulting boxes
wrt to the second coordinate. Then, again, for the four resulting boxes wrt to the third coordinate and so
on. Splitting stops when there is exactly one point in each leaf.

When searching the tree, we consider only points whose bounding boxes touch the query region (ball in this
case).

Fact 2.1. Any axis aligned hyperplane touches at most n1−1/d boxes.

Proof. Assume the hyperplane is aligned with the i’th coordinate. That is, the points x ∈ Rd such that
xi = c. When splitting according to coordinate i, the split value is either larger or smaller than c. When
that happens, the hyperplane only touches one of the two nodes a level lower in the tree. The result is that,
a splitting according to i’s coordinate cuts the number of touched leaf boxes (points) by half. Finally, since
we cycle through the coordinates in a round robin fashion, each coordinate is used for splitting log2(n)/d
times. Note that log2(n) is the depth of the tree. We can now calculate the number of touched leaf boxes
by n(1/2)log2(n)/d = n1−1/d.

2

To complete the analysis, note that the axis aligned bounding box of the query has 2d facets. Therefore,
the number of touched cells is O(dn1−1/d). For each touched cell we need to decide whether the associated
point is a valid search result which takes O(d) operations. The resulting search complexity of the algorithm is
O(d2n1−1/d) which is sub-linear in n. While this analysis is rather simple it actually cannot be made much
better [4]. There are many variants of this algorithm [2] and practical observations that claim kd-trees
perform well in low dimensions.

Kd-trees are used extensively in 3D libraries to organize objects, lights, etc. They are data adaptive,
meaning that they can concentrate on areas where there is data, and keep large boxes when there is not
much detail [5, 3]. In addition to nearest neighbor search they support following rays, organizing data for
collision detection, etc.

Nevertheless, this runtime is only better than the brute force solution of O(nd) when n > dd which
already hints that there might be a problem with high dimensions. Before introducing the source of the
problem, we should cover some basic facts about random variables. Facts that will serve us for the rest of
the course.

3 Probability Tools and Facts Recap

A variable X is a random variable if it assumes different values according to a probability distribution. For
example, X can denote the outcome of a three sided die throw. The variable X takes the values x = 1, 2, 3
with equal probabilities.

The expectation of X is the sum over the possible values times the probability of the events.

E[X] =

3∑
x=1

xPr(X = x) = 1
1

3
+ 2

1

3
+ 3

1

3
= 2 (1)

Continuous scalar random variables are described by their distribution function ϕ.

Pr[Y ∈ [a, b]] =

∫ b

a

ϕ(t)dt.

3

For a function ϕ to be a valid distribution we must have:

∀ t, ϕ(t) ≥ 0 (where it is defined) (2)∫ b

a

ϕ(t)dt is well defined for all a and b (3)∫ −∞
−∞

ϕ(t)dt = 1 (4)

For example consider the continuous variable Y taking values in [0, 1] uniformly. That means ϕ(t) = 1
if t ∈ [0, 1] and zero else. This means that the probability of Y being in the interval [t, t+ dt] is exactly dt.
And so the expectation of Y is:

E[Y] =

∫ 1

t=0

tϕ(t)dt =

∫ 1

t=0

t · dt =
1

2
t2|10 = 1/2 (5)

Remark 3.1. Strictly speaking, distributions are not necessarily continuous or bounded functions. In fact,
they can even not be a function at all. For example, the distribution of X above includes three Dirac-δ
functions which are not, strictly speaking, functions. In this class, though, we will see only well behaved
distributions.

3.1 Dependence and Independence

A variable X is said to be dependent on Y if the distribution of X given Y is different than the distribution
of X. For example, assume the variable X takes the value 1 if Y takes a value of less than 1/3 and the
values 2 or 3 with equal probability otherwise (1/2 each). Clearly, the probability of X assuming each of its
values is still 1/3. However, if we know that Y is 0.7234 the probability of X assuming the value 1 is zero.
Let us calculate the expectation of X given Y as an exercise.

E(X|Y) =

3∑
x=1

xPr(X = x|Y ≤ 1/3) = 1 · 1 (6)

E(X|Y) =

3∑
x=1

xPr(X = x|Y > 1/3) = 1 · 0 + 2
1

2
+ 3

1

2
= 2.5 (7)

E(X|Y) = 1 for y ∈ [0, 1/3] and E(X|Y) = 2.5 for y ∈ (1/3, 1].
Remember: E(X|Y) is a function of y!

Definition 3.1 (Independence). Two variables are said to be Independent if:

∀y, Pr[X = x|Y = y] = Pr[X = x].

They are dependent otherwise.

Fact 3.1. If two variables X and Y are Independent the so are f(X) and g(Y) for any functions f and g.

Fact 3.2 (Linearity of expectation 1). For any random variable and any constant α:

E[αX] = αE[X] (8)

Fact 3.3 (Linearity of expectation 2). For any two random variables

EX,Y [X + Y] = E[X] + E[Y] (9)

even if they are dependent.

4

Fact 3.4 (Multiplication of random variables). For any two independent random variables

EX,Y [XY] = E[X]E[Y] (10)

This does not necessarily hold if they are dependent.

Definition 3.2 (Variance). For a random variable X we have

Var[X] = E[(X − E[X])2] = E[X2]− (E[X])2 (11)

The standard deviation σ of X is defined to be σ(X) ≡
√

Var[X].

Definition 3.3 (Additivity of variances). For any two independent variables X and Y we have

Var[X + Y] = Var[X] + Var[Y] (12)

Fact 3.5 (Markov’s inequality). For any non-negative random variable X:

Pr(X > t) ≤ E[X]

t
(13)

Proof.

Eψ[x] =

∫ ∞
0

zψ(z)dz =

∫ t

0

zψ(z)dz +

∫ ∞
t

zψ(z)dz ≥ 0 +

∫ ∞
t

tψ(z)dz = tPr[x > t]

Fact 3.6 (Chebyshev’s inequality). For any random variable X

Pr[|X − E[X]| > t] ≤ σ2(X)

t2
(14)

Proof.

Pr[|X − E[X]| > t] = Pr[(X − E[X])2 > t2] ≤ E[(X − E[X])2]

t2
=
σ2(X)

t2

Lemma 3.1 (The union bound). For any set of m events A1, . . . , Am:

Pr[∪mi=1Ai] ≤
m∑
i=1

PrAi.

In words, the probability that one or more events happen is at most the sum of the individual event
probabilities.

Theorem 3.1 (Chernoff’s bound). Let Xi be a set of independent random variables such that E[Xi] = 0
and |Xi| ≤ 1 almost surely. Also define σ2

i = E[X2
i] and σ2 =

∑
i σ

2
i . Then:

Pr[
∑
i

Xi ≥ t] ≤ max(e−t
2/4σ2

, e−t/2)

Proof.

Pr[
∑
i

Xi ≥ t] = Pr[λ
∑
i

Xi ≥ λ t] (for λ ≥ 0) (15)

= Pr[eλ
∑

iXi ≥ eλ t] (because ex is monotone) (16)

≤ E[eλ
∑

iXi]/eλ t (by Markov) (17)

= ΠiE[eλXi]/eλ t (by independence of Xi) (18)

5

Now, for x ∈ [−1, 1] we have that ex ≤ 1 + x+ x2 so E[eλXi] ≤ 1 + E[λXi] + λ2E[X2
i] ≤ 1 + λ2σ2

i . Now,

since 1 + x ≤ ex we have that 1 + λ2σ2
i ≤ eλ

2σ2
i . Combining the above we have that E[eλXi] ≤ eλ2σ2

i

ΠiE[eλXi]/eλ t ≤ ΠiE[eλ
2σ2

i]/eλ t (19)

= eλ
2σ2−λt (20)

Now, optimizing over λ ∈ [0, 1] we get that λ = min(1, t/2σ2) which completes the proof.

Theorem 3.2 (Chernoff’s bound; Another useful form). Let X1, . . . , Xn be independent {0, 1} valued random
variables. Each Xi takes the value 1 with probability pi and 0 else. Let X =

∑n
i=1Xi and let µ = E[X] =∑n

i=1 pi. Then:

Pr[X > (1 + ε)µ] ≤ e−µε
2/4

Pr[X < (1− ε)µ] ≤ e−µε
2/2

Or, using the union bound:

Pr[|X − µ| > εµ] ≤ 2e−µε
2/4

4 Curse of Dimensionality

A prime example for the curse of dimensionality is that a random point in [0, 1]d is likely to be far from any
set of n points in the unit cube. Consider the distance between the query point q and an input data vector
x. We want to show that ‖xi − q‖2 ∈ Ω(d).

First, notice that Pr[|x(j)− q(j)| ≥ 1/4] ≥ 1/2. The expected distance between x and q is at least d/8.
Since q(j) are independently drown, we can apply the Chernoff bound and get that for all n points in the
data set ‖xi − q‖2 ≥ d/16 if d ≥ const · log(n).

Now, consider the kd-tree data structure and algorithm run on a random query. If the radius of the ball
around q is less than d/16 the query is “uninteresting” since it is likely to return no results at all. On the
other hand, if the radius is greater than d/16 than the ball around q will cross all the major partitions along
one of the axes. That means that the algorithm will visit at least 2d partitions.

5 Volumes of balls and cubes

Another interesting phenomenon that occurs in high dimensions is the fact that unit spheres are exponentially
smaller (in volume) than their containing boxes. Let us see this without using the explicit formulas for the
volume of d dimensional spheres.

To compute the volume of a unit sphere, we perform a thought experiment. First, bound the sphere in
a box (with sides of length 2). Then, pick a point in the box uniformly at random. What is the probability

6

p that the point is also in the sphere? This is exactly the ratio between the volume of the ball and the box
(2d). More accurately, V = p2d where V is the volume of the sphere.

Now, we can bound p from above. A uniformly random chosen point from the cube is a vector x ∈ Rd
such that each coordinate x(i) is chosen uniformly from [−1, 1]. The event that x is in the unit sphere is

the event that ‖x‖2 =
∑d
i=1 x(i)2 ≤ 1. Let zi = x(i)2, and note that E[z(i)] =

∫ 1

−1
1
2 t

2dt = 1/3. Therefore,

E[‖x‖2] = d/3. Also,

Var(zi) =

∫ 1

−1

1

2
t4dt − (1/3)2 = 1/5− 1/9 ≤ 1/10

so by Chernoff’s inequality. p = Pr[
∑d
i=1 x(i)2 ≤ 1] = Pr[

∑d
i=1(zi − E[zi]) ≤ 1 − d/3] ≤ e−

(d/3)2

4d/10 ≤ e−d/4.
This concludes the observation that the fraction of the volume which is inside the sphere is exponentially
small compared to the cube. A counter intuitive way of viewing this is that almost the entire volume of the
cube is concentrated at the “corners”.

6 Orthogonality of random vectors

A uniformly chosen random vector from the unit sphere (q) is almost orthogonal to any fixed vector (x) with
high probability. We can see this in two ways. First, we can see that the expected dot product of any vector
x with a the random vector q is small. It is trivial that E[〈x, q〉] = 〈x,E[q]〉] = 0.

Moreover, E[〈x, q〉2] = 1/d. To see this, consider q1, q2, . . . , qd where q1 = q and q2, . . . , qd complete q
to an orthogonal basis. Clearly, the distribution of all qi are identical (but not independent) E[〈x, q〉2] =

E[〈x, q1〉2] = E[1d
∑d
i=1〈x, qi〉2] = 1

d‖x‖
2.

It is not hard to show that in fact for any vector x, if q is chosen uniformly at random from the unit
sphere then Pr[〈x, q〉 ≥ t√

d
] ≤ e−t

2/2. First, replace that uniform distribution over the unit sphere with

an i.i.d. distribution of Gaussians q(i) ∼ N (0, 1√
d
). Note that E[‖q‖2] = 1, moreover, from the sharp

concentration of the χ2 distribution we know that E[‖q‖2] ≈ 1. For convenience we will assume that
E[‖q‖2] = 1 and will ignore the small inaccuracy. Moreover, due to the rotational invariance of the Gaussian
distribution we have that any direction is equally likely and thus this new distribution approximates the

uniform distribution over the sphere. Next, notice that due to the rotational invariance 〈x, q〉 ∼ N (0, ‖x‖√
d

)

and Pr[〈x, q〉 ≥ t‖x‖√
d

] ≤ e−t2/2.

7 The failure of space partitioning schemes

As we’ve seen, a “typical” distance from a random query to the nearest neighbor in a d-dimensional unit box
is at the scale of

√
d. Note that the side of any box in any space partitioning scheme (including kd-trees,

of course) is at most 1. As a result, we guaranteed to scan at least Ω(d) levels in the tree which is exp(d)
points. Note that this is more than the brute force solution of O(nd) when d > log(n).

8 Bonus section: solution of the “riddle” from the first class

You were asked to prove that the `∞ metric is the most general metric possible for any finite collections of
objects.

Consider n objects a1, . . . , an and a general metric d(·, ·). Consider the mapping ψ of each item to an
n dimensional vector space xi = [d(ai, a1), d(ai, a2), . . . , d(ai, an)]. It is now easy to see that ‖xi − xj‖∞ =
d(ai, aj).

‖xi − xj‖∞ = max
k
|xi(k)− xj(k)| = max

k
|d(ai, ak)− d(aj , ak)| = |d(ai, aj)− d(ai, aj)| = d(ai, aj)

7

Note that if k 6= i, j then |d(ai, ak) − d(aj , ak)| ≤ d(ai, aj) because of the triangle inequality d(ai, ak) ≤
d(ai, aj) + d(aj , ak)+ and d(aj , ak) ≤ d(ai, aj) + d(ai, ak).

References

[1] Jon Louis Bentley. Multidimensional binary search trees used for associative searching. Commun. ACM,
18:509–517, September 1975.

[2] Sanjoy Dasgupta and Yoav Freund. Random projection trees and low dimensional manifolds. In Pro-
ceedings of the Fortieth Annual ACM Symposium on Theory of Computing, STOC ’08, pages 537–546,
New York, NY, USA, 2008. Association for Computing Machinery.

[3] Matthijs Douze, Jean-Sébastien Franco, and Bruno Raffin. Quickcsg: Arbitrary and faster boolean
combinations of n solids. 2015.

[4] D. T. Lee and C. K. Wong. Worst-case analysis for region and partial region searches in multidimensional
binary search trees and balanced quad trees. Acta Inf., 9(1):23–29, mar 1977.

[5] KR Subramanian and DS Fussel. A search structure based on kd trees for efficient ray tracing. PhD
thesis, PhD thesis, The University of Texas at Austin, 1990.

8

