
Vector search #2 – 
Text embeddings



Text 



Sequence of tokens 

● Query items 
○ Keywords
○ question…

● Database items 
○ Document
○ Paragraph 
○ Sentence 
○ Passage… 

● Tokens → units than can be enumerated 1..W
○ Convenient: words
○ n-grams – overlapping or not 
○ Tokenization

https://platform.openai.com/tokenizer



Word statistics 

● 10k - 1M
○ Vocabulary of the language 
○ Named entities

● Normalization (stemming)
○ Normalize upper/lower case 
○ Remove plural
○ Remove conjugations 
○ Remove declension
○ Split words for morphologically rich languages 

Kaasschaafverkoper 



Very unbalanced 

● Common: 
○ A, the, it, etc.

● Less common:



Bag of words



Bag of words 

● The set of words in a document 
● Discard order: “bag” 

○ Keep counts
○ Word → number in 1..W

● Sparse vector of size W (6 non-zeros / 10k)

Paris has more and more bike lanes.

[0,....,0, 1, 0…..0, 1, 0….0, 1, 2, 0…., 1, 0…..0, 1]

W



Match words between query and database docs 

I ride a bike in Paris. Paris has more and more bike lanes.

a 1

Amsterdam 3

and 2

bike 1, 2, 3

has 2

in 1, 3

lane 2

more 2

Paris 1, 2

ride 1,3

● Inverted index 
○ Map word → list of documents that contain the word
○ “Inverted list”
○ Word stemming (remove plural)
○ Stop words (common words)

Bike rides in Amsterdam



TF-IDF weighting

● How important is a term (word) to a 
document? 

● TF: term frequency 
○ More important if the term appears more in 

the doc 
● IDF: inverse document frequency

○ More important if the term is more rare in the 
corpus D

○ For common terms → near 0
○ Justifies stop words 



Search with TF-IDF weighting

● TF-IDF weights in inverted list entries
● Sum query term entries over 

documents to get scores 

Amsterdam (3, 5.2)

bike (1, 1,5), (2, 1,5), (3, 1.5)

has (2, 0.5)

lane (2, 3.5)

more (2, 4.0)

Paris (1, 4.0),  (2, 4.0)

ride (1,3.2) ,(3, 3.2)

bike , 1.0

Paris, 2.0

Doc Score 

1

2

3

Ranked results 



Equivalence with sparse matrix-vector product
● Inverted file = CSR 

○ Compressed Sparse Row representation 
● Efficient implementation (see scipy.sparse)

                          TF-IDF matrix 
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BM25 ranking

● Widely used variant of TF-IDF
○ Depends on scalar parameters 



About word matching

● Good performance 
○ Fast 
○ Excellent for keyword queries “python io module”
○ BOW = sum of individual word embeddings  

● Limitation
○ Exact matching 
○ “Tall” is as different from “large” as “small” 

 

● Unable to take semantics into account
○ Purely statistical



Embedding discrete items 



Creating embeddings for discrete items 

● A set of items 
○ We don’t have/use a priori information (Fields, properties, etc.) 
○ We need embeddings for them in some dimension d 

● Relations between items 
○ Sparse observations 
○ Scores

● Find embeddings 
○ such that similarities explain the relations 
○ Nearby embeddings → high scores 
○ Far away embeddings → low scores 



A step aside: recommender systems

● N users 
○ Customers 

● M items  
○ Products, movies, etc.

● Score for user i, item j:  
○ Direct: stars, grades, … 
○ Indirect: previous purchases, clicks,... 

● Regularity: 
○ similar users tend to choose similar items
○ “Collaborative filtering”



Recommender systems – optimization

● Reproduce scores with dot product between user and item 

● Predict non-observed scores
● Formalization:

○ Objective = minimize the loss  
○ Linear algebra works best with quadratic loss…

Set of observed scores 



Recommender systems – all scores known

● If the full score matrix was known

●  Matrix formulation 

● Low-rank approximation of R 
○ Matrix factorization 
○ SVD, see Edo’s class 



Recommender systems – iterative solution

● S is not full… 
○ otherwise what’s there to recommend? 

● Stochastic gradient descent 
● Random initialization of parameters 
● Iterate  

○ Pick a random sample x of training set S
○ Update the parameters in the direction of the gradient
○ Learning rate  



Exercise: 

● Compute the gradient

● Complexity of a gradient step? 



End side step

● Embeddings for a set of items can be built from relationships 

● Usually not as simple 
○ Need regularization term
○ Normalization 
○ → Integrates smoothly in iterative algorithm 
○ Sampling strategies – 

● Tradeoff on dimensionality d: 
○ If d is too small → insufficient capacity, not accurate 
○ If d is too large → overfitting – unable to generalize 



Machine learning with SGD 

● Train a function y = f(x, theta) 
○ Given a training dataset {x_i, y_i} 
○ Iterative optimization of theta

● Interaction between 4 components
○ A function that is “sufficiently complex” for the task: the neural net
○ A loss function that reflects the task, sum over training examples
○ A way to present the dataset 
○ An optimization algorithm: how to update the theta ?

● Subtle craftsmanship
○ little guidance from theory 😕
○ Many methods don’t work unless parameters 

are set properly – trial and error – sweeps
○ details in the papers are important!



Word embeddings 



Word2vec 

● Trained on corpus of documents 
○ No additional information (supervision) 
○ Trained on docs with 1B words total

● Pull together words that are nearby in 
document text 

● Skip-gram model 
○ “Predict” a missing word from context 
○ Probabilistic formulation (not really used)

[Mikolov & al. Distributed representations of words 
and phrases and their compositionality. NIPS’13]



Skip gram model 

● Current word representation: u_w 
● Neighboring word representations: v_w

○ Neighborhood size: c=3 

● Pull together u_movie and v_action, v_or, v_a, v_comedy
● Then move on to the next word (“or”) 

For instance, any given movie can, to a rough degree of approximation, be described 
in terms of some basic attributes such as overall quality, whether it's an action movie 
or a comedy, what stars are in it, and so on.  And every user's preferences can 
likewise be roughly described in terms of whether they tend to rate high or low, 
whether they prefer action movies or comedies, what stars they like, and so on.

https://sifter.org/~simon/journal/20061211.html



Basic formulation

● Compare embeddings with dot product 
● Use “SGD friendly” optimization objective

○ With softmax  
○ Also has probabilistic interpretation

Sum over doc words 
                         Score(t, j)
                 Sum over word neighborhood                   Softmax w.r.t. all words of the vocabulary

whether it's an action movie or a comedy, what stars 



Practical implementation

● Bottleneck is the softmax computation 
○ Complexity O(d * W)
○ Can be approximated with hierarchical softmax 

● Negative sampling  
○ Replace softmax with log of sigmoid 
○ Encourage large dot product but not too much 
○ And a sample of k “noise” words N(t, j)

● Subtle choice of sampling
○ Based on word frequencies 



Evaluation of word embeddings: nearest word 

● Nearest words
○ Limited capability… 

← results for word2vec extended 
to pair of words



Evaluation of word embeddings 

● Specially designed task: word relationship test 

[Mikolov & al. Efficient Estimation of Word 
Representations in Vector Space, NIPS’13]

Semantic 
(8869) 

Syntactic 
(10675)



Word arithmetic 

● The country-to-capital vector:

● Dependence on dim vectors:  



Word embeddings with sub-words (fastText)

● Collect all n-gram sub-words for a word 

● Sum up n-gram embeddings + word embedding 
○ Hashed n-gram → limited to 2M embeddings 
○ Collisions unlikely…
○ Replace sub-word embedding in skip-gram model 

● Same optimization as word2vec

[Bojanowski & al. Enriching Word Vectors with 
Subword information, ACL’17]

tiling 
3 <ti til ili lin ing ng>

4 <til tili ilin ling ing>

5 <tili tilin iling ling>

6 <tilin tiling iling>



Results on fastText

● Significant improvement on syntactic analogy
● Needs less training data 
● Works better on morphologically rich languages



Word translation 

● Analogy task suggests there is a way to translate 
○ Given translation of anchor words

● Maybe a rigid structure in word embeddings?

● Could we align them ?
○ → effortless translation 
○ W unitary matrix  

[Word translation without parallel data, Conneau 
et al, ICLR’18]



Estimating W

● If there are a few word (<< vocabulary) correspondences

● Then W can be estimated with 
○ Closed form solution based on SVD 

● Translation 



What if we don’t have initial words? 

● Use adversarial training 
● Discriminator function D(x, theta) 

○ Higher for source language (x) 
○ Lower for target language (y)
○ Parameters theta

● Batches of (Wx, Wx, y, Wx, y, Wx, Wx)
● Step 1: optimize discriminator 

● Step 2: optimize W to fool the discriminator 



Refinement with reliable word matches

● Select a subset of word pairs and re-estimate W
● How to select reliable pairs? 

○ General method to select a subset of pairs 
● k-NN search + additional criteria
● Reverse nearest neighbors 

○ Wx must be a nearest neighbor of y 
○ y must be a nearest neighbor of Wx

● CSLS criterion 
○ Contrast with similarity to other neighbors 



Results



Conclusion on word embeddings

● Rich semantic information
● Very simple to train 

○ Outperforms multi-layer models 
○ Needs lots of training data 

● Emerging arithmetic properties 
● Basis for the following

○ Input to more complex language models 



Document embeddings 



Multi-word embeddings  
● Sequence of words 

○ Whole documents 
○ Sentence 
○ phrase 
○ Paragraph / passage

● Combinatorial size
○ Possible for 2-word units 

○ Cannot build a table of all document → embedding 
● What to do with embeddings?  

○ Nearest neighbor search (Translation) 
○ Question answering (context) 

NP noun phrase
PP preposition
VP vector phrase 



Word pooling

● Sum of word vectors 
○ Continuous bag of words (CBOW, not to be confused with the word2vec model) 
○ Possibly with IVF weighting (increase weight of less frequent words) 
○ Extension of the classical BOW (that is sparse)

● Works for sentence translation retrieval 
○ 2000 query sentences 
○ 200k targets that contain a translation 

of the sources 
○ Sentence embedding with words 

[Offline bilingual word vectors, 
orthogonal transformations and the 
inverted softmax, Smith et al, ICLR’17]



Vector sum pooling exercise

● Given 
○ Set of n vectors uniform on sphere dimension d
○ Fixed unit query vector q 

● Compute 
○ If all vectors are independent of q
○ If q is one of the vectors 

● → a general property of pooling 

[A group testing framework for similarity 
search in high-dimensional spaces, Shi 
et al, ACM MM’14]



Sentence encoders



A language model 

● Probabilistic formulation
○ Sequence of tokens 
○ Predict next token’s likelihood given a context 

window of size k

● At inference: does this belong to the 
language? 

● Metric: perplexity
○ Lower = better

● Unsupervised 
○ Can be trained on any corpus of texts
○ Larger is better…

[Improving Language Understanding
by Generative Pre-Training, Radford et al, OpenAI tech report ’18]

Given by a neural net with 
parameters Theta

{



Language models based on transformers

● Initially applied to sequence-to-sequence modeling 
○ translation
○ Encoder + decoder, with supervision

● Input = sequence of token embeddings
○ Arbitrary length
○ Token → look-up table 
○ positional encoding 

● Sequence of Blocks  
○ Attention
○ Feed forward
○ Applied as residuals

[Attention is all you need, Vaswani et al, NIPS’17]

linear

linear

(T, d)

(T, 4*d)

(T, d)



● Pass input through 3 linear layers → Q, K, V
● Attention mechanism 

○ Interaction between all vectors of the sequence 
○ Row-wise softmax 
○ Weighted sum of V matrix rows 

● Multi-head
○ Vector decomposed into sub-vectors 
○ Processed independently
○ Concatenated back in the end 

The attention function 



What the attention pays attention to
● Hard to visualize 

○ Multiple layers
○ Multiple heads…

● LARGE language models 
○ Add more layers 12 → 80
○ Increase embedding 

dimensionality 768 →1024
○ Increase number of heads 12 → 

16
○ … and increase context size! 

[Survey on Self-Supervised Multimodal Representation 
Learning and Foundation Models, Thapa, arxiv’22]



Scaling up the context size  
● More context:

○ More information for output
○ Up to 49k tokens 

● Quadratic cost of Q * K 
● Exploit attention sparsity 

○ More sparse for upper layers 
○ Find non-0 entries is max inner product search

● External memory… 
○ Later in this class 

[H2O: Heavy-Hitter Oracle for Efficient Generative Inference of 
Large Language Models, Zhang et al, Arxiv’23]



BERT 

● Simpler use case than sequence to sequence 
○ Just interested in embedding for one sequence 

● Unsupervised pre-training 
○ Large corpus 
○ Language model-like task 

● Supervised fine-tuning 
○ Small corpus
○ Possibly small additional layer 
○ 11 tasks in the original paper 

[BERT: Pre-training of deep bidirectional 
transformers for language understanding, Devlin et 
al, ArXiV’19]



BERT: pre-training

● Arbitrary tasks 
● Begin sequence with [CLS]
● Masked LM 

○ Special token [MASK]
○ Replace some words with [MASK] 
○ Predict token from output 

representation (linear + softmax) 
● Next sentence prediction 

○ Separate sentences with [SEP]
○ Are the 2 sentences following each 

other? 
○ From the [CLS] embedding



BERT fine-tuning (from the original paper)

● Tested on 11 different tasks 
○ 1 or 2 sentences on input (with [SEP]) 
○ Per-token prediction or per-sentence (with [CLS])
○ + linear layer + softmax 

● Example task: SQuAD
○ Find answer to question

in a sentence / paragraph
○ Classifier for first token 
○ Classifier for last token 



BERT examples 

Pre-training 

Fine-tuning for SQuAD

[SQuAD: 100,000+ Questions for Machine Comprehension of Text, Rajpurkar, ArXiV‘16]



Emerging properties of LLMs

● Seem to be able to do some form of reasoning
○ Syntactic relationships (just a word) → more complex relationships 
○ Especially in combination with language generation.

● Semantics 
○ Input is semantically high level (human generated, encoded compactly)
○ Reasoning by analogy 

[Sparks of Artificial General Intelligence: Early 
experiments with GPT-4, Bubeck et al, ArXiV’23]





Sentence embeddings for retrieval



Contrastive learning 

● f_\theta is a BERT  
○ Average pooling of output token representations 

● InfoNCE loss 

● Computed per training batch
● Form of contrastive learning 

○ Expressed as a classification objective 
○ Degrees of freedom: positives ? negatives? 



DPR – supervised

● Positive pairs: 
○ (Question, answer) pair

● Negative pairs: 
○ pairs from the same batch with high BM25 overlap

[Dense passage retrieval for Open-Domain Question 
answering, Karphukhin etal, ArXiv‘20]



Contriever – unsupervised

● Positive pairs: independent cropping 
○ Sometimes overlaps

● Negative pairs: momentum contrast 
○ previous batches 
○ Embeddings computed with slowly updating network 

It is a truth universally acknowledged, that a single man in possession of a good fortune must 
be in want of a wife. However little known the feelings or views of such a man may be on his 
first entering a neighbourhood, this truth is so well fixed in the minds of the surrounding 
families, that he is considered as the rightful property of some one or other of their daughters.

[Unsupervised dense information retrieval with contrastive 
learning, Izacard et al, ICML’22]



Contriever results
BEIR family of benchmarks (doc retrieval) 

[Beir: A heterogenous benchmark for zero-shot evaluation of information retrieval 
models, Thakur et al, ArXiV’21]



Contriever results

● Also multilingual 
○ Common embeddings

● DRAGON
○ Extensive study of data 

augmentations 

[How to Train Your DRAGON: Diverse Augmentation Towards 
Generalizable Dense Retrieval, Lin et al. ArXiV’23]



Generating answers



The task 

● Q&A
● Make a real answer

● Insert special tokens 
● Supervised training of the seq2seq model

○ Pretrained T5 model (220-770M params) 
○ Train on 64 GPUs

[Leveraging Passage Retrieval with Generative 
Models for Open Domain Question Answering
Izacard & Grave, ArXiV’20]



RePlug

 

[Replug: Retrieval-augmented black-box 
language models, Shi et al, ArXiV’23]

● Use perplexity of language model 



Conclusion

● Embeddings in the text domain 
● Word-level / sentence-level 
● Tools

○ Metric learning
○ NCE 
○ Pre-training / fine-tuning
○ Transformer models 

● Natural way for information retrieval in a corpus of text docs



End


