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Planning of the classes



Matthijs Douze, Meta
(Research scientist, 10 years at INRIA)

● Computer vision 
● Similarity search
● Unsupervised learning
● Real-time 3D reconstruction

Meet the teachers

Edo Liberty, Pinecone 
(Director of AWS AI Labs, Sr Director 
Yahoo Research)

● Numerical Linear Algebra
● Streaming Algorithms
● Machine Learning Theory 
● Randomized Algorithms

Nataly Brokhim, Princeton

(Researcher at Google AI)

● Machine Learning Theory
● Regret Minimization
● Boosting

Harsha Simhadri, Microsoft
(Senior Principal Researcher, MSR)

● web-scale approximate 
nearest-neighbor search

● new ML operators and 
architectures



Classes by weeks
● 9/8 - Class 1 - Introduction to Vector Search [Matthijs + Edo + Nataly]
● 9/15 - Class 2 - Text embeddings [Matthijs]
● 9/22 - Class 3 - Image embeddings [Matthijs] 
● 9/29 - Class 4 - Low Dimensional Vector Search [Edo]
● 10/6 - Class 5 - Dimensionality Reduction [Edo] 
● 10/13 - No Class - Midterm Examination Week
● 10/20 - No Class - Fall Recess
● 10/27 - Class 6 - Approximate Nearest Neighbor Search [Edo]
● 11/3 - Class 7 - Clustering [Edo]
● 11/10 - Class 8 - Quantization for lossy vector compression [Matthijs]
● 11/17 - Class 9 - Graph based indexes [Guest lecturer + Edo]
● 11/24 - No Class - Thanksgiving Recess
● 12/1 - Class 10 - Student project and paper presentations [Edo + Nataly]

Presentations - 
applied ML, AI 
centric

Whiteboard - 
algorithms, theory, 
math/proof oriented

Presentations - 
experimental/ 
applied CS



Grading and Project Information

Class grading is based on a final project a) write up and b) in-class presentation 
● Project Administrator: Nataly 
● Projects can be done individually, in teams of two or at most three students.
● Expect to spend a few hours over the semester on the project proposal 
● All project proposals should be approved before the thanksgiving break
● Project can be in three different flavors

○ Theory/Research: Explore a research problem, conduct literature survey, and propose a potential idea for 
improvement. 

○ Data Science/AI: Build an interesting vector search application using Pinecone, explain what value it brings, 
and what insights you gained. 

○ Engineering/HPC: Adapt or add to FAISS, explain your improvements,  show results. 
● Expect to spent 3-5 full days on the project itself (on par with preparing for a a final)
● Project write up submission is due 12/1
● In class project project presentation, each student presents their work in five minutes.



Information retrieval 



Context

?



Classification 
An index

● A database

● Query concept: 
“Bike”

● Example: Google/bing/Yandex/Baidu/Naver image 
search



Similarity search 

● A database

● A query 

● “Reverse image search” engine (Google/Bing, Tineye, …)

An index



Recommendation 

● A database

● Query = the user

Based on past behavior 

 

An index



Question 
answering 

● A database

● Query = “Who was the president of 
Pakistan in 2006?” 

An index

Pervez Musharraf 



Formally: information retrieval 

● A database
○ Collection of items 
○ Items = text / images / audio / video / products / etc.
○ Indexed, updated over a long time period 

● A query 
○ Item = what triggers the query
○ May be of the same type as the database items or not

● Result(s)
○ Subset of database items that are relevant to the query
○ Typically needs to be provided quickly (interactive time)
○ Typically ordered 
○ Correct or incorrect result 

● We need the algorithm!

Index

✔
✔
✘



Data volumes and scale: for one person 

● Data sizes on one’s computer 
● Text

○ A few 100s of documents on a computer 
○ 40 e-mails per day

● Images
○ Average smartphone contains 2000 pictures

● Connections 
○ Average of 388 friends on Facebook 

 

● → Search scale is ~100 - 10k 

[source: https://www.lightstalking.com/photo-statistics/]

https://www.lightstalking.com/photo-statistics/


Data volumes and scale: for the world
● Text

○ Size of wikipedia: 54M articles
○ Visible web: 15B pages (in 2015)

● Images
○ Average smartphone contains 2000 pictures 
○ 3.8B smartphone users
○ 1B+ images uploaded to FB per day
○ 4T photos stored on Google Photos, (+4B per day)

● Video 
○ 500h of video uploaded to Youtube per minute (2019) 

● Specialized applications
○ CERN has 70 PB of storage for particle collision experiments

● Growth is exponential
○ More users \times more content per user 
○ Grows faster than hard disk capacity 
○ Need for more data centers 

● → search scale is 1B to 10T items 

[source: https://www.lightstalking.com/photo-statistics/
https://en.wikipedia.org/wiki/Wikipedia:Size_of_Wikipedia
https://upload.wikimedia.org/wikipedia/commons/9/90/Hard_drive_capacity_over_time.svg]

https://www.lightstalking.com/photo-statistics/
https://en.wikipedia.org/wiki/Wikipedia:Size_of_Wikipedia
https://upload.wikimedia.org/wikipedia/commons/9/90/Hard_drive_capacity_over_time.svg


Evaluation: datasets and metrics 



A dataset 

● Why datasets? 
○ Evaluate performance of retrieval system

● Fixed database 
● Fixed queries 
● A task to perform

○ Some type of retrieval 
○ Evaluate relevance of algorithm for that task

● Known results
○ What the human considers a correct result 
○ “Ground truth”

✔
✔
✘

✔
✔
✘



Object recognition on images 

● UKBench 
● 10200 images

○ Groups of 4 
● Setup: 

○ Each image is used as a query in turn 
○ GT = other images of the same group 

[Nister, Stewenius, Scalable recognition with a 
vocabulary tree, CVPR’16.]



Building recognition

● Oxford building dataset 
● 5000 database images 
● 55 query images + bounding box 

○ From 12 buildings in Oxford 
● Ground-truth: same building 



Q&A from document corpus 

● TriviaQA
● Database: 662k documents 
● Queries: 

○ 95k Q&A pairs 
● Ground truth: 

○ Exact same answer
○ Document with evidence 
○ on avg. 5 docs / query contain the answer

● Retrieval + extract answer 

[Joshi, Choi, Weld, Zettlemoyer. TriviaQA: A Large Scale Distantly 
Supervised Challenge Dataset for Reading Comprehension. ACL’ 2017]

https://arxiv.org/abs/1705.03551
https://arxiv.org/abs/1705.03551


Recommendation

● Netflix prize dataset 
○ Can also be considered as a classification dataset…

● Database (aka items): 17.7k movies 
● Queries (aka users): 480k users 
● Training data 

○ Number of stars given by some (user, item) pair 
○ Very sparse: we know what the user thinks only of a tiny 

subset of movies
● Ground-truth: 

○ Held-out ratings 

Training data:

quadruplet of the form 
<user, movie, date of grade, grade>



Results for a image dataset

● Holidays dataset 
● True / false positive 

[Hamming embedding and weak 
geometric consistency for large scale 
image search, Jegou, Douze, Schmid, 
ECCV’08]



Example: fashion dataset 

● DeepFashion
● Long-standing and hard problem 

○ Expert knowledge 
○ Very important for commerce sites 

● Correct / incorrect results 

[DeepFashion: Powering Robust Clothes Recognition and Retrieval with Rich 
Annotations, Ziwei Liu, CVPR’16]

[Cross-domain fashion image retrieval
Bojana Gajic, Ramon Baldrich, CVPR’18 WS]



Information retrieval metrics

● Based on a ranked result list 
○ For all queries 

● Ranks the whole database or 
just a subset

● Results are assessed as 
correct or incorrect

● “True / False” positive (TP / FP) 
most                                       less
relevant                             relevantqueries



Metrics: precision / recall 

● Set of results, unordered
● Extreme cases 

○ Perfect results
○ Random results 

Retrieval results

Correct items 

Database items

TP

FP

FN

TN



Recall @ rank 

● Fix the rank (=size of result list) and measure recall 
○ Precision is a monotonous function of recall 

● Metric for a set of queries 
○ Average over per-query results

● Special case: accuracy 
○ single positive (think classification problem)
○ recall @ 1 = accuracy

● Used in ukbench 
○ Rank = 4 
○ Normal: number of correct results per query…

constant



Precision-recall plot

● Vary the rank in result list
○ Crop result list size 

● Measure the precision and recall for all ranks
● For random ranking of database 

○ precision is constant 
○ Recall increases linearly with rank 

● For reasonable retrieval systems 
○ Precision decreases 
○ Recall increases 
○ Start at (0, 1)

recall

pr
ec

is
io

n

1

1



Metric for precision-recall plots

recall

P
re

ci
si

on
rappel

Compare the green 
and blue methods

rappel

1

1

● Summary of performance
● High–precision: 

○ web search results… 
○ Few people look beyond 5 results 

● High-recall: 
○ Exhaustive identification of harmful content
○ Expensive / manual verification



Equal error rate 

recall

pr
ec

is
io

n

Equal Error Rate

precision
=recall

● Classical metric for biometric systems 
○ Face / fingerprint / iris recognition

● False Acceptance Rate = False Rejection Rate



Average precision

recall

pr
ec

is
io

n

Average precision
● Computed as area under the P-R curve

○ summing up trapezoid areas 
○ Other variant: rectangles

● Used for image 
retrieval

rank #TP recall precision

NA 0 1

1 0

2 1

3 2

4 2

5 3

6 3

7 4



● Given the following query and sorted result list, compute the AP with 
trapezoids. 

1 2 3 4 5

6 7 8 9 10

Exercise: compute average precision



Per-query AP

● Per query AP:
○ Relevant when each query is consumed in isolation
○ User queries 
○ Objectives: Minimize latency, maximize few first results, 

unbounded result list
● Usually based on scores

○ Ordering = sorting scores 
● For several queries

○ Average over queries 
○ all queries are equally important
○ Mean AP (mAP)

7 6.7 6 5.6 5.3

Decreasing scores

5

5.3 4.5 4.4 3.2 3.1 3.0

6.3 6 5.9 5.6 4.2 3.8

8.2 8 7.5 7.2 6.5 6.2



Global AP 

● Relevant with a batch of queries 
● Queries are not all as important 

○ some queries don’t have any correct result (precision 
undefined)

○ some have many 
● Use a global threshold on scores 

○ Pairwise comparison 
● How many correct pairs? 

○ (query item, db item)
7 6.7 6 5.6 5.3

Decreasing scores

5

5.3 4.5 4.4 3.2 3.1 3.0

6.3 6 5.9 5.6 4.2 3.8

8.2 8 7.5 7.2 6.5 6.2

Threshold = 6

Batch of
queries



Global AP 
Q1 7 6.7 6 5.6 5.3

Decreasing scores

5

5.3 4.5 4.4 3.2 3.1 3.0

6.3 6 5.9 5.6 4.2 3.8

8.2 8 7.5 6.8 6.5 6.2

Q2

Q3

Q4

rank score query TP/FP

1 8.2 Q4 TP

2 8 Q4 TP

3

4

5

6

7 recall

pr
ec

is
io

n

Average precision



Evaluation: benchmarks



Benchmark

● A dataset 
● Ground-truth
● A metric 
● Baseline 

○ Reference result with a simple algorithm
● Standardized evaluation

○ For papers 
○ For companies 



Career of a benchmark 

● Typical example
○ Imagenet classification

● Changed metric 
○ Top-5 error → top-1 accuracy

● Pre- and post-deep learning
● Migration to 

Paperwithcode
● Saturation 
● Questions about the 

Benchmark
○ Annotation errors 
○ Overfitting 



Benchmarks for image retrieval 
● Oxford building dataset 
● ROxford (Hard)



Dataset biases 

● Every dataset has biases 
● Misalignment with the task 
● Motivation for the creation of 

the dataset 

[Torralba, Efros, An unbiased look at 
dataset bias, CVPR’11]



It is hard to search in a larger dataset 

● More false positives in results
○ Insert in from to TPs

● But not too hard 
○ Random result list would be linearly 

decreasing
● The Holidays dataset 



Metrics and databases for benchmarks 

● Many types of metrics 
○ Only a few common ones presented here 

● Good metric
○ How to reflect the objective? 
○ People optimize for the metric rather than the objective
○ Cheating (use bias) 

● Good database 
○ Large enough (overfitting)
○ Good annotation
○ Coverage of the task (no bias) 



Information retrieval with regular databases 



Re-use existing infrastructure 

● What do we have? 
○ Filesystems, 
○ Database systems 
○ Text / keyword-based search engines 

● Map items into a compatible representation 
○ How far can we get with that? 



Classical databases 

● Set of data that is put in relation
● A DBMS (DataBase Management System) manages the data entries

○ Oracle, DB2, Sybase, PostgreSQL, Mysql… 
○ Key-value store 

● Useful for well structured data 
○ Tabular records
○ Easy to manipulate, search etc. 

● Typically queries via SQL queries 



Classical databases 

● Structured data 
○ Tables with records (rows)

● Query language: SQL 

SELECT id FROM table WHERE date = “2022-04-05”

SELECT id FROM table WHERE keywords LIKE “%bike%”

● Efficient search



Classical databases – point access 

● Based on hash tables 
● Hash function: maps input array 

(characters…) to an integer 
○ Good hash function is as 

discontinuous as possible 
○ Something like (with large prime 

numbers!)

● Entry stored at k(x)
● A fraction of the entries is empty 

○ ~30% 
○ over allocation of memory
○ Collisions 

…
x=sister
…
x=through
x=throughout
x=thought
x=thunder
…



Classical databases – point access 

● A fraction of the entries is empty 
○ ~30% 
○ over allocation of memory
○ Managing collisions…

● Search 
○ Query x 
○ Start search at q(x)
○ Walk through collisions 

● For keys known exactly
○ By design of the hash function
○ Small change in the key → large jump in the 

table 

…
x=sister
…
x=through
x=throughout
x=thought
x=thunder
…



Classical databases – range access 

● Based on tree search
● Example: B+ trees
● Internal nodes with separating values 

○ Fixed capacity B (determined by disk block size)
○ Not necessarily full 

yi<115 115<yi<153 153<yi<175 yi>175

   115   153  175



B+ tree: leaves

● Contain database records 
● Linking to next entry 

Next leaf link
30 35 Ø

25<yi<52

Ø



B+ tree: leaves

● Invariant: 
○ Always 50 to 100% full
○ When too many elements in a node: split
○ When two neighboring nodes are < 50% full on average: merge

● Search single value: 
○ Route to relevant leaf 
○ Complexity logarithmic in database size 

● Serarching an interval [a, b]
○ Route to relevant leaf
○ Follow links until > b



Exercise: which nodes are visited for this search

● TODO example tree 

12 12 44 2



Classical databases – the inverted index 

● For text-based indexing
○ Document = sequence of words 
○ Direct index = maps document id to list of words in it 

● Inverted index 
○ Map word → list of documents that contain the word 



Classical databases – the inverted index 

I ride a bike in Paris. Paris has more and more bike lanes.

a 1

Amsterdam 3

and 2

bike 1, 2, 3

has 2

in 1, 3

lane 2

more 2

Paris 1, 2

ride 1,3

● For text-based indexing
○ Document = sequence of words 
○ Direct index = maps document id to list of words in it 

● Inverted index 
○ Map word → list of documents that contain the word
○ “Inverted list”
○ Word stemming (remove plural)
○ Stop words (common words)

Bike rides in Amsterdam



The inverted index: search 

Amsterdam 3

bike 1, 2, 3

has 2

lane 2

more 2

Paris 1, 2

ride 1,3

● Query = “bike Paris”

● Query cost 
○ Depends on size of inverted lists 
○ Intersection of sorted lists 
○ Worst-case linear in total size of lists

bike

Paris

Doc 1, 
Doc 2



Metadata



Metadata = auxiliary data 

● Not the main content 
○ Data associated with it 

● Easier to manipulate 
○ More semantically high level 
○ Made for indexing 



Images: 
EXIF metadata

● Added by camera 
○ Or post-processing 

software
● JPEG or HEIC 

This is the village I live in! 



AAC metadata 

● Contains info like author, copyright, etc
○ https://wiki.multimedia.cx/index.php/FFmpeg_Metadata

https://wiki.multimedia.cx/index.php/FFmpeg_Metadata


Text-based retrieval

● Text is easy to search 
○ Inverted file 

● Beyond metadata 
○ Let’s add a description of the content and use text
○ keyword based retrieval

● What image search on the web is based on 
○ “ALT text” 



Automatic annotation tools 

● State of the art is very 
accurate 

○ Image segmentation
○ For predefined classes 

● Type of bike? 
● Name of person? 
● Posture? 



Content annotations 

Making content easy to search is not obvious (Shutterstock)



Annotation ambiguity

● “Maria and Bella during spring break”
● “My fitness program for this summer” 
● “Big Sur beaches” 
● “Woman and dog running” 



What to label

All objects of the defined categories, unless:
you are unsure what the object is.
the object is very small (at your discretion).
less than 10-20% of the object is visible.
If this is not possible because too many objects, mark image as bad.

Viewpoint Record the viewpoint of the ‘bulk’ of the object e.g. the body rather than the head.  Allow viewpoints within 10-20 degrees.
If ambiguous, leave as ‘Unspecified’. Unusually rotated objects e.g. upside-down people should be left as 'Unspecified'.

Bounding box Mark the bounding box of the visible area of the object (not the estimated total extent of the object).
Bounding box should contain all visible pixels, except where the bounding box would have to be made excessively large to include a few 
additional pixels (<5%) e.g. a car aerial.

Truncation If more than 15-20% of the object lies outside the bounding box mark as Truncated. The flag indicates that the bounding box does not cover 
the total extent of the object.

Occlusion If more than 5% of the object is occluded within the bounding box, mark as Occluded. The flag indicates that the object is not totally visible 
within the bounding box.

Example: annotator instructions 
(Pascal VOC)



Event Name Giving directions to a location
Definition: One or more people give directions to one or more other

people, either in person or over the phone, by explaining verbally and/or with gestures how to get to a 
particular location.

Explication: People may give directions in response to being asked for
them, or they may give them without being asked as a part of a normal conversation if the topic of 
conversation is a location (e.g. telling a friend how to get to a new restaurant that just opened that she 
may be interested in eating at). People may ask for directions from strangers they see on the street or 
in a store, or call an information service or someone they know to ask for directions over the phone. 
Or,the person giving directions and the one getting directions may be traveling together, and one person is serving as the navigator while the other(s) follow the directions, such as 
commonly happens when the person getting the directions is driving and the person giving directions is reading them from a map, printout, or smart phone. Note that a GPS giving 
directions is not relevant for this event, and that the person giving directions must be visible. If people are visiting a new city or country, they will often have a map or guidebook with 
them to reference when asking for directions from a person on thestreet. Depending on whether the people asking for directions are/will be walking, driving, taking a subway, train, or 
bus, the directions given may reference city blocks, highways, or subway/train/bus routes. People giving directions often gesture along with their directions, for example pointing their 
arm to the right and turning their head to the right as they explain to go right, and this could be done even if giving them on the phone. People giving directions on the
phone may stay on the line with the person they are helping while they
reach their destination, giving them the directions step by ste
real time.

scene: outdoors, indoors

objects/people: map, driver, car, bicycle, subway, train, bus, pedestrian, car passenger, guidebook, 
portable telephone

activities: gestures indicating directions (e.g. pointing or
 extending arm straight/to right or left of speaker), person pointing
 out location on a map, head movement indicating direction

audio: narration of directions

Example: annotator instructions 
(Trecvid 2012)



Limitations of text-based retrieval

● Requires user intervention
○ People don’t bother writing keywords for their data

● Difficult to define (ambiguous)
● Does not scale 

○ More content created per user 
○ People don’t spend more time annotating…

● ⇒ A dead end! 
● Need processing from the content itself



Similarity measures 



Comparing items

● Query item 
● Database item
● Distance function

○ Or similarity 
● Building a comparison 

function
○ Hand-crafted 
○ Based on machine learning: 

matching and non-matching 
examples

○ Subject of 2 lessons

Complicated function

Similarity measure 



Limitations

● Architecture is complex 
○ Directly takes all the image / video pixels as input 
○ Expensive to evaluate the function
○ Needs to be evaluated for all the N database elements for a single query

● Compared to 
○ Hash indexing O(1)
○ Range search O(log N)
○ Inverted file O(1)

● ⇒ too expensive!



Vector embeddings



Embedding vectors: motivation 

● Intermediate representation
○ simple!
○ The vector 

● Easy to compare
● Constrained 

comparison 
Complicated 
function

Relevant / irrelevant

Complicated 
function

Distance < 
threshold?vector vector



What is a vector? (I knew it, but forgot during the summer holidays)

● Table of numbers
○ Real (floating point) numbers 
○ Sometimes integers or even single bits 

                                [0.4, 0.6, -0.5, …., 1.5]

● Fixed size d 
● Compact to store (more compact than the original data item)
● Cheap to compare – O(d)
● Explainable – result is a usable item 

○ Unlike some classification approaches



Post embedding

User 
embedding Image

Embedding
(CNN layer)

Face embedding

Video
embedding

Text embedding 
(word2vec,
fastText)

Relationship
embedding

typical: d=100-1000 
(dense)

Embedding vectors: motivation 



The embedding contract 🤝 

● The embedding extractor and embedding indexer 
● Embedding function: 

○ “I extract embedding vectors that can be compared” 
○ Given distance function

● Embedding indexer (vector search lib):
○ “I will manage the scaling and search”
○ Search – efficiency and accuracy
○ Database operations – update, insertion, removal, migration… 



Collection:

Query:
em

be
dd

in
g

Vector 
search

Index 

Result:

Retrieval with embeddings 



Comparing vectors



Vector distances 

● Distances that obey the 3 criteria 
● For vectors x, y of size d
● The Lp norm family



Vector distances in 2D

x

y

● Spheres
○  Locus of equal distances

● Which sphere is for what 
distance? 



Distance measures

● A distance measure is a function ExE → R^+ 
○ (P1)separation: d(x,y) = 0 ⇔ x = y
○ (P2)symmetry: d(x,y) = d(y,x)
○ (P3) triangular inequality: d(x,z) ≤ d(x,y) + d(y,z)

● Relaxation: dissimilarity measure 
○ (P1’) x = y ⇒ d(x, y) = 0

● Similarity is the opposite of dissimilarity



Maximum inner product search 

● Not a distance 
● Vector inner product as a similarity 

measure 
x

y

��



Cosine similarity

● Angle between two vectors 

● Special case: norm-1 vectors 
○ Equivalent to max inner product search
○ Equivalent to L2 search!

x

y

��



Mahalanobis distance

● Anisotropic vector dimensions

● Distance takes this into account

● Can be reduced to a L2 distance 
○ matrix factorization



Hamming distance 

● Between binary vectors (bits)
● Number of differing bits between x and y

x = [1, 0, 0, 1]

y = [1, 1, 0, 0]

● Hamming distance = d_1 = d_2^2 
● Integer between 0 and d
● Easy to compute 

○ On integers 
○ 2 machine instructions



Bridges between distances 

● Useful equality

● Equivalence for normalized vectors
○ Cosine, max inner product, L2 are equivalent

● L2 <-> inner product 
○ transforming vectors
○ In dimension d+1 



Distances and retrieval results 

● Reading TP and FP from distance 
plots 

● Binomial distribution
○ For random binary embeddings 

● Usually many more incorrect 
results than correct ones 

[Improving bag-of-features for large scale image search, Jegou, et al, IJCV’10]

threshold

TP

FN

TN

FP



Vector search



One-to-many comparison

● Simple operation

● Can be computed with brute force 
algorithm 

○ O(d * n) 

Vector 
search

Index 

Result:



Vector search types, ground truth and metrics 

● K-nearest neighbor search 
○ Find the top-k nearest vectors 
○ Example: search results 
○ Nearest neighbor recall @ rank k 
○ Intersection measure → recall of the k nearest neighbors 

● Range search 
○ Find all vectors within a radius r
○ Example: remove violating images
○ Metric: precision & recall



End-to-end vs. vector search metric 

● Correct item returned at rank 1
○ correct item returned at rank 1 with exact vector search 
○ Vector search returns correct result for this vector 

● Decompose the metric 
Accuracy = 

Embedding accuracy 

X 

Vector search accuracy 



Brute-force vector search

● Used as baseline and building block for other methods 
● Complexity 

○ Distance computations O(n*d) 
○ Retrieving top-k: O(n*log(k))   [see Edo’s classes]
○ Retrieving range search: O(n)

● Large factor between slow and fast implementations 

● Map to distance computations 



Exercise: simple implementation in Python

● Write a distance function that computes all L2 distances between two sets of 
vectors 

○ Only matrix operations

● Write a function that returns the nearest neighbor in L2 for a set of queries
○ Using pairwise_distances 



Performance axes for vector search 
● Other axes: 

○ Index build time
○ Memory overhead 
○ Training time 

Accuracy
(% of actual nearest neighbors 

found at rank 1)

Memory (RAM)
(bytes  per vector) Search speed 

(ms per vector / QPS)

Exhaustive 
Search

Compression Pruning



Tradeoffs

● Fix dataset 
● Fix one axis
● Tradeoffs between the two 

others 
● Pareto-optimal front 



What’s next…

● 2 classes about how to compute embeddings 
● The rest about vector search! 


